Skip to main content

Adaptive Weight Aggregation in Federated Learning for Brain Tumor Segmentation

  • Conference paper
  • First Online:
Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries (BrainLes 2021)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 12963))

Included in the following conference series:

Abstract

We introduce similarity weighted aggregation, a principled and efficient method for regularized weight aggregation in federated learning. Our method is adapted to non-IID collaborators and is simultaneously cost-efficient. This is the first method to propose a sliding-window to select the collaborators, to the best of our knowledge. We demonstrate our method on the federate training task of the FeTS 2021 challenge. We proposed two variations coined Similarity Weighted Aggregation (SimAgg) and Regularized Aggregation (RegAgg). SimAgg results on internal validation data demonstrate that the proposed method outperforms the baseline FedAvg. The method SimAgg by our team HT-TUAS won 2nd position on both leaderboards in FeTS2021 challenge. SimAgg is the only method to be among the top performing methods on both the leaderboards, making it robust and reliable to data variations. Our solution is open sourced at: https://github.com/dskhanirfan/FeTS2021

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/FETS-AI/Challenge/tree/main/Task_1.

References

  1. Annas, G.J.: HIPAA regulations-a new era of medical-record privacy? (2003)

    Google Scholar 

  2. Bakas, S., et al.: Segmentation labels and radiomic features for the pre-operative scans of the TCGA-GBM collection. The cancer imaging archive. Nat. Sci. Data 4, 170117 (2017)

    Google Scholar 

  3. Bakas, S., et al.: Segmentation labels and radiomic features for the pre-operative scans of the TCGA-LGG collection. Cancer Imaging Archive 286 (2017)

    Google Scholar 

  4. Bakas, S., et al.: Advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features. Sci. Data 4(1), 1ā€“13 (2017)

    Article  Google Scholar 

  5. Beel, J.: Federated meta-learning: democratizing algorithm selection across disciplines and software libraries. Science (AICS) 210, 219 (2018)

    Google Scholar 

  6. Chen, Y., Sun, X., Jin, Y.: Communication-efficient federated deep learning with layerwise asynchronous model update and temporally weighted aggregation. IEEE Trans. Neural Netw. Learn. Syst. 31(10), 4229ā€“4238 (2019)

    Article  Google Scholar 

  7. Corinzia, L., Beuret, A., Buhmann, J.M.: Variational federated multi-task learning. arXiv preprint arXiv:1906.06268 (2019)

  8. Fung, C., Yoon, C.J., Beschastnikh, I.: Mitigating sybils in federated learning poisoning. arXiv preprint arXiv:1808.04866 (2018)

  9. He, C., Annavaram, M., Avestimehr, S.: Group knowledge transfer: federated learning of large CNNs at the edge. arXiv preprint arXiv:2007.14513 (2020)

  10. Jeong, E., Oh, S., Kim, H., Park, J., Bennis, M., Kim, S.L.: Communication-efficient on-device machine learning: Federated distillation and augmentation under non-IID private data. arXiv preprint arXiv:1811.11479 (2018)

  11. Kadhe, S., Rajaraman, N., Koyluoglu, O.O., Ramchandran, K.: FastSecAgg: scalable secure aggregation for privacy-preserving federated learning. arXiv preprint arXiv:2009.11248 (2020)

  12. Kairouz, P., et al.: Advances and open problems in federated learning (2019). https://arxiv.org/abs/1912.04977

  13. Li, T., Sahu, A.K., Zaheer, M., Sanjabi, M., Talwalkar, A., Smith, V.: Federated optimization in heterogeneous networks. arXiv preprint arXiv:1812.06127 (2018)

  14. McMahan, B., Moore, E., Ramage, D., Hampson, S., Arcas, B.A.: Communication-efficient learning of deep networks from decentralized data. In: Artificial Intelligence and Statistics, pp. 1273ā€“1282. PMLR (2017)

    Google Scholar 

  15. Nasr, M., Shokri, R., Houmansadr, A.: Comprehensive privacy analysis of deep learning: passive and active white-box inference attacks against centralized and federated learning. In: 2019 IEEE Symposium on Security and Privacy (SP), pp. 739ā€“753. IEEE (2019)

    Google Scholar 

  16. Pati, S., et al.: The federated tumor segmentation (FETS) challenge. arXiv preprint arXiv:2105.05874 (2021)

  17. Reina, G.A., et al.: OpenFL: an open-source framework for federated learning. arXiv preprint arXiv:2105.06413 (2021)

  18. Sadilek, A., et al.: Privacy-first health research with federated learning. medRxiv (2020)

    Google Scholar 

  19. Truex, S., Baracaldo, N., Anwar, A., Steinke, T., Ludwig, H., Zhang, R.: A hybrid approach to privacy-preserving federated learning (2018)

    Google Scholar 

  20. Voigt, P., Von dem Bussche, A.: The EU General Data Protection Regulation (GDPR). A Practical Guide, 1st edn. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57959-7

    Book  Google Scholar 

  21. Wei, K., et al.: Federated learning with differential privacy: algorithms and performance analysis. IEEE Trans. Inf. Forensics Secur. 15, 3454ā€“3469 (2020)

    Article  Google Scholar 

  22. Xu, J., Glicksberg, B.S., Su, C., Walker, P., Bian, J., Wang, F.: Federated learning for healthcare informatics. J. Healthc. Inform. Res. 5(1), 1ā€“19 (2021)

    Article  Google Scholar 

  23. Yeganeh, Y., Farshad, A., Navab, N., Albarqouni, S.: Inverse distance aggregation for federated learning with non-IID data. In: Albarqouni, S., et al. (eds.) DART/DCL -2020. LNCS, vol. 12444, pp. 150ā€“159. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-60548-3_15

    Chapter  Google Scholar 

  24. Zhao, Y., Li, M., Lai, L., Suda, N., Civin, D., Chandra, V.: Federated learning with non-IID data. arXiv preprint arXiv:1806.00582 (2018)

Download references

Acknowledgements

This work was supported by the Business Finland under Grant 33961/31/2020. We also acknowledge the support and computational resources facilitated by the CSC-Puhti super-computer, a non-profit state enterprise owned by the Finnish state and higher education institutions in Finland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Irfan Khan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Khan, M.I., Jafaritadi, M., Alhoniemi, E., Kontio, E., Khan, S.A. (2022). Adaptive Weight Aggregation in Federated Learning for Brain Tumor Segmentation. In: Crimi, A., Bakas, S. (eds) Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. BrainLes 2021. Lecture Notes in Computer Science, vol 12963. Springer, Cham. https://doi.org/10.1007/978-3-031-09002-8_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-09002-8_40

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-09001-1

  • Online ISBN: 978-3-031-09002-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics