Skip to main content

nn-UNet Training on CycleGAN-Translated Images for Cross-modal Domain Adaptation in Biomedical Imaging

  • Conference paper
  • First Online:
Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries (BrainLes 2021)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 12963))

Included in the following conference series:

Abstract

In recent years, deep learning models have considerably advanced the performance of segmentation tasks on Brain Magnetic Resonance Imaging (MRI). However, these models show a considerable performance drop when they are evaluated on unseen data from a different distribution. Since annotation is often a hard and costly task requiring expert supervision, it is necessary to develop ways in which existing models can be adapted to the unseen domains without any additional labelled information. In this work, we explore one such technique which extends the CycleGAN [2] architecture to generate label-preserving data in the target domain. The synthetic target domain data is used to train the nn-UNet [3] framework for the task of multi-label segmentation. The experiments are conducted and evaluated on the dataset [1] provided in the ‘Cross-Modality Domain Adaptation for Medical Image Segmentation’ challenge [23] for segmentation of vestibular schwannoma (VS) tumour and cochlea on contrast enhanced (ceT1) and high resolution (hrT2) MRI scans. In the proposed approach, our model obtains dice scores (DSC) 0.73 and 0.49 for tumour and cochlea respectively on the validation set of the dataset. This indicates the applicability of the proposed technique to real-world problems where data may be obtained by different acquisition protocols as in [1] where hrT2 images are more reliable, safer, and lower-cost alternative to ceT1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Code available at: https://github.com/aitorzip/PyTorch-CycleGAN.

  2. 2.

    Code available at: https://github.com/MIC-DKFZ/nnUNet.

References

  1. Shapey, J., et al.: Segmentation of vestibular schwannoma from MRI, an open annotated dataset and baseline algorithm. Sci. Data 8(1), 286 (2021). https://doi.org/10.1038/s41597-021-01064-w

    Article  Google Scholar 

  2. Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. CoRR, abs/1703.10593 (2017)

    Google Scholar 

  3. Isensee, F., et al.: nn-UNet: self-adapting framework for U-Net-based medical image segmentation. CoRR, abs/1809.10486 (2018)

    Google Scholar 

  4. Isensee, F., Jaeger, P.F., Full, P.M., Vollmuth, P., Maier-Hein, K.H.: nn-UNet for brain tumor segmentation. CoRR, abs/2011.00848 (2020)

    Google Scholar 

  5. Gretton, A., Borgwardt, K.M., Rasch, M.J., Schölkopf, B., Smola, A.J.: A kernel method for the two-sample-problem. In: Schölkopf, B., Platt, J.C., Hofmann, T. (eds.) NIPS, pp. 513–520. MIT Press (2006). ISBN: 0-262-19568-2

    Google Scholar 

  6. Sun, B., Feng, J., Saenko, K.: Return of frustratingly easy domain adaptation. CoRR, abs/1511.05547 (2015)

    Google Scholar 

  7. Damodaran, B.B., Kellenberger, B., Flamary, R., Tuia, D., Courty, N.: DeepJDOT: deep joint distribution optimal transport for unsupervised domain adaptation. CoRR, abs/1803.10081 (2018)

    Google Scholar 

  8. Kang, G., Jiang, L., Yang, Y., Hauptmann, A.G.: Contrastive adaptation network for unsupervised domain adaptation. CoRR, abs/1901.00976 (2019)

    Google Scholar 

  9. Ganin, Y., Lempitsky, V.: Unsupervised domain adaptation by backpropagation (2014)

    Google Scholar 

  10. Goodfellow, I., et al.: Generative Adversarial Nets. In: Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems, vol. 27. Curran Associates, Inc. (2014). https://proceedings.neurips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf

  11. Shen, J., Qu, Y., Zhang, W., Yu, Y.: Wasserstein distance guided representation learning for domain adaptation. In: McIlraith, S.A., Weinberger, K.Q. (eds.) AAAI, pp. 4058–4065. AAAI Press (2018)

    Google Scholar 

  12. Chen, C., Dou, Q., Chen, H., Qin, J., Heng, P.-A.: Synergistic image and feature adaptation: towards cross-modality domain adaptation for medical image segmentation. In: AAAI, pp. 865–872. AAAI Press (2019). ISBN: 978-1-57735-809-1

    Google Scholar 

  13. Li, Y., Wang, N., Shi, J., Liu, J., Hou, X.: Revisiting batch normalization for practical domain adaptation. In: ICLR Workshop. OpenReview.net (2017)

    Google Scholar 

  14. Carlucci, F.M., Porzi, L., Caputo, B., Ricci, E., Bulò, S.R.: AutoDIAL: automatic domain alignment layers. In: ICCV, pp. 5077–5085. IEEE Computer Society (2017). ISBN: 978-1-5386-1032-9

    Google Scholar 

  15. Saito, K., Ushiku, Y., Harada, T.: Asymmetric tri-training for unsupervised domain adaptation. In: Precup, D., Teh, Y.W. (eds) ICML, pp. 2988–2997. PMLR (2017)

    Google Scholar 

  16. Michieli, U., Biasetton, M., Agresti, G., Zanuttigh, P.: Adversarial learning and self-teaching techniques for domain adaptation in semantic segmentation. IEEE Trans. Intell. Veh. 5, 508–518 (2020)

    Article  Google Scholar 

  17. Chang, W.L., Wang, H.P., Peng, W.H., Chiu, W.C.: All about structure: adapting structural information across domains for boosting semantic segmentation. In: CVPR, pp. 1900–1909. Computer Vision Foundation/IEEE (2019)

    Google Scholar 

  18. Sun, Y., Wang, X., Liu, Z., Miller, J., Efros, A., Hardt, M.: Test-time training with self-supervision for generalization under distribution shifts. In: Proceedings of the 37th International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 119, pp. 9229–9248 (2020). https://proceedings.mlr.press/v119/sun20b.html

  19. Karani, N., Chaitanya, K., Konukoglu, E.: Test-time adaptable neural networks for robust medical image segmentation. CoRR, abs/2004.04668 (2020)

    Google Scholar 

  20. Varsavsky, T., Orbes-Arteaga, M., Sudre, C.H., Graham, M.S., Nachev, P., Cardoso, M.J.: Test-time unsupervised domain adaptation. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12261, pp. 428–436. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59710-8_42 ISBN: 978-3-030-59710-8

    Chapter  Google Scholar 

  21. Wang, D., Shelhamer, E., Liu, S., Olshausen, B., Darrell, T.: Tent: Fully Test-Time Adaptation by Entropy Minimization. In: International Conference on Learning Representations (2021). https://openreview.net/forum?id=uXl3bZLkr3c

  22. Campello, V.M., et al.: Multi-centre, multi-vendor and multi-disease cardiac segmentation: the M&Ms challenge. IEEE Trans. Med. Imaging 40(12), 3543–3554 (2021). https://doi.org/10.1109/TMI.2021.3090082

    Article  Google Scholar 

  23. Dorent, R., et al.: CrossMoDA 2021 challenge: Benchmark of Cross-Modality Domain Adaptation techniques for Vestibular Schwannoma and Cochlea Segmentation (2022). arXiv: 2201.02831. https://doi.org/10.48550/arxiv.2201.02831

  24. Yi, Z., Zhang, H.(Richard), Tan, P., Gong, M.: DualGAN: unsupervised dual learning for image-to-image translation. Paper presented at the meeting of the ICCV (2017)

    Google Scholar 

  25. Royer, A., et al.: XGAN: unsupervised image-to-image translation for many-to-many mappings. In: Singh, R., Vatsa, M., Patel, V.M., Ratha, N. (eds.) Domain Adaptation for Visual Understanding, pp. 33–49. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-30671-7_3

    Chapter  Google Scholar 

Download references

Acknowledgements

This work has been partially supported by the Spanish project PID2019-105093GB-I00 and by ICREA under the ICREA Academia programme. Additionally, this work has also been supported in part by the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 825903 and No. 952103.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Smriti Joshi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Joshi, S. et al. (2022). nn-UNet Training on CycleGAN-Translated Images for Cross-modal Domain Adaptation in Biomedical Imaging. In: Crimi, A., Bakas, S. (eds) Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. BrainLes 2021. Lecture Notes in Computer Science, vol 12963. Springer, Cham. https://doi.org/10.1007/978-3-031-09002-8_47

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-09002-8_47

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-09001-1

  • Online ISBN: 978-3-031-09002-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics