Abstract
Accurate segmentation of different sub-regions of gliomas including peritumoral edema, necrotic core, enhancing and non-enhancing tumor core from multiparametric MRI scans has important clinical relevance in diagnosis, prognosis and treatment of brain tumors. However, due to the highly heterogeneous appearance and shape, segmentation of the sub-regions is very challenging. Recent development using deep learning models has proved its effectiveness in the past several brain segmentation challenges as well as other semantic and medical image segmentation problems. In this paper we developed a deep-learning-based segmentation method using a patch-based 3D UNet with the attention block. Hyper-parameters tuning and training and testing augmentations were applied to increase the model performance. Preliminary results showed effectiveness of the segmentation model and achieved mean Dice scores of 0.806 (ET), 0.863 (TC) and 0.918 (WT) in the validation dataset.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Kumar, V., et al.: Radiomics: the process and the challenges. Magn. Reson. Imaging 30, 1234–1248 (2012)
Gillies, R.J., Kinahan, P.E., Hricak, H.: Radiomics: images are more than pictures. They Are Data Radiology 278, 563–577 (2015)
Baid, U., et al., The RSNA-ASNR-MICCAI BraTS 2021 benchmark on brain tumor segmentation and radiogenomic classification. arXiv:2107.02314 (2021)
Menze, B.H., et al.: The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans. Med. Imaging 34(10), 1993–2024 (2015). https://doi.org/10.1109/TMI.2014.2377694
Bakas, S., et al.: Advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features. Nat. Sci. Data 4, 170117 (2017). https://doi.org/10.1038/sdata.2017.117
Bakas, S., et al.: Segmentation labels and radiomic features for the pre-operative scans of the TCGA-GBM collection. The Cancer Imaging Archive (2017). https://doi.org/10.7937/K9/TCIA.2017.KLXWJJ1Q
Bakas, S., et al.: Segmentation labels and radiomic features for the pre-operative scans of the TCGA-LGG collection. The Cancer Imaging Archive (2017). https://doi.org/10.7937/K9/TCIA.2017.GJQ7R0EF
Bakas, S., et al.: Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the BRATS challenge. arXiv preprint arXiv:1811.02629 (2018)
Gal, Y., Ghahramani, Z.: Dropout as a bayesian approximation: representing model uncertainty in deep learning. arXiv preprint. arXiv:1506.02142 (2015)
Pan, H., Feng, Y., Chen, Q., Meyer, C., Feng, X.: Prostate segmentation from 3D MRI using a two-stage model and variable-input based uncertainty measure. arXiv preprint. arXiv:1903.02500 (2019)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Feng, X., Bai, H., Kim, D., Maragkos, G., Machaj, J., Kellogg, R. (2022). Brain Tumor Segmentation with Patch-Based 3D Attention UNet from Multi-parametric MRI. In: Crimi, A., Bakas, S. (eds) Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. BrainLes 2021. Lecture Notes in Computer Science, vol 12963. Springer, Cham. https://doi.org/10.1007/978-3-031-09002-8_8
Download citation
DOI: https://doi.org/10.1007/978-3-031-09002-8_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-09001-1
Online ISBN: 978-3-031-09002-8
eBook Packages: Computer ScienceComputer Science (R0)