Skip to main content

Dice Focal Loss with ResNet-like Encoder-Decoder Architecture in 3D Brain Tumor Segmentation

  • Conference paper
  • First Online:
Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries (BrainLes 2021)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 12963))

Included in the following conference series:

Abstract

Accurate identification of brain tumor sub-regions boundaries in MRI plays a profoundly important role in clinical applications, such as surgical treatment planning, image-guided interventions, monitoring tumor growth, and the generation of radiotherapy maps. However, manual delineation practices has suffered from many problems such as requiring anatomical knowledge, taking considerable time for annotation, showing inaccuracy due to human error. To tackle these issues, automated segmentation of brain tumors from 3D magnetic resonance images (MRIs) has been used in recent years. In this work, a ResNet-like Encoder-Decoder architecture is trained on the Multimodal Brain Tumor Segmentation Challenge (BraTS) 2021 training dataset. Experimental results demonstrate that this work shows a faily good performance in brain tumor segmentation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://docs.nvidia.com/clara/clara-train-sdk/pt/index.html.

References

  1. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  2. Baid, U., et al.: The RSNA-ASNR-MICCAI BraTS 2021 benchmark on brain tumor segmentation and Radiogenomic classification. In: CoRR abs/2107.02314 (2021). arXiv: 2107.02314. URL: https://arxiv.org/abs/2107.02314

  3. Menze, B.H., et al.: The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans. Med. Imaging 34(10), 1993–2024 (2015). https://doi.org/10.1109/TMI.2014.2377694

    Article  Google Scholar 

  4. Bakas, S., et al.: advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features. Sci. Data 4(1), 1–13 (2017)

    Article  Google Scholar 

  5. Bakas, S., et al.: Segmentation labels and radiomic features for the pre-operative scans of the TCGA-GBM collection. In: The Cancer Imaging Archive (2017). https://doi.org/10.7937/K9/TCIA.2017.KLXWJJ1Q

  6. Bakas, S., et al.: Segmentation labels and radiomic features for the pre-operative scans of the TCGA-LGG collection. In: The Cancer Imaging Archive (2017). https://doi.org/10.7937/K9/TCIA.2017.GJQ7R0EF

  7. Myronenko, A.: 3D MRI brain tumor segmentation using autoencoder regularization. In: CoRR abs/1810.11654 (2018). arXiv: 1810.11654, http://arxiv.org/abs/1810.11654

  8. Agarap, A.F.: Deep learning using rectified linear units (ReLU). In: CoRR abs/1803.08375 (2018). arXiv: 1803.08375, http://arxiv.org/abs/1803.08375

  9. Wu, Y., He, K.: Group Normalization. Int. J. Comput. Vis. 128(3), 742–755 (2019). https://doi.org/10.1007/s11263-019-01198-w

    Article  Google Scholar 

  10. Tsung-Yi, L., et al.: Focal Loss for Dense Object Detection. In: CoRR abs/1708.02002 (2017). arXiv: 1708.02002, http://arxiv.org/abs/1708.02002

  11. Loshchilov, I., Hutter, F.: Fixing weight decay regularization in adam. In: CoRR abs/1711.05101 (2017). arXiv: 1711.05101, http://arxiv.org/abs/1711.05101

  12. Hatamizadeh, A., et al.: UNETR: Transformers for 3D medical image segmentation (2021). arXiv: 2103.10504 [eess.IV]

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quan-Dung Pham .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nguyen-Truong, H., Pham, QD. (2022). Dice Focal Loss with ResNet-like Encoder-Decoder Architecture in 3D Brain Tumor Segmentation. In: Crimi, A., Bakas, S. (eds) Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. BrainLes 2021. Lecture Notes in Computer Science, vol 12963. Springer, Cham. https://doi.org/10.1007/978-3-031-09002-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-09002-8_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-09001-1

  • Online ISBN: 978-3-031-09002-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics