Skip to main content

Reordering Decision Diagrams for Quantum Computing Is Harder Than You Might Think

  • Conference paper
  • First Online:
Reversible Computation (RC 2022)

Abstract

Decision diagrams have proven to be a useful data structure in both, conventional and quantum computing, to compactly represent exponentially large data in many cases. Several approaches exist to further reduce the size of decision diagrams, i.e., their number of nodes. Reordering is one such approach to shrink decision diagrams by changing the order of variables in the representation. In the conventional world, this approach is established and its availability taken for granted. For quantum computing however, first approaches exist, but could not fully exploit a similar potential yet. In this paper, we investigate the differences between reordering decision diagrams in the conventional and the quantum world and, afterwards, unveil challenges that explain why reordering is much harder in the latter. A case study shows that, also for quantum computing, reordering may lead to improvements of several orders of magnitude in the size of the decision diagrams, but also requires substantially more runtime.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comp. 26(5), 1484–1509 (1997)

    Article  MathSciNet  Google Scholar 

  2. Grover, L.K., et al.: A fast quantum mechanical algorithm for database search. In: Symposium on Theory of Computing, pp. 212–219 (1996)

    Google Scholar 

  3. Riste, D., et al.: Demonstration of quantum advantage in machine learning. Npj Quantum Inf. 3(1), 1–5 (2017)

    Article  Google Scholar 

  4. Cao, Y., Romero, J., Olson, J.P., et al.: Quantum chemistry in the age of quantum computing. Chem. Rev. 119(19), 10856–10915 (2019)

    Article  Google Scholar 

  5. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information (10th Anniversary edition). Cambridge University, Press (2016)

    Google Scholar 

  6. Bahar, R.I., et al.: Algebraic decision diagrams and their applications. In: International Conference on CAD, pp. 188–191 (1993)

    Google Scholar 

  7. Miller, D.M., Thornton, M.A.: QMDD: a decision diagram structure for reversible and quantum circuits. In: International Symposium on Multi-Valued Logic, IEEE Computer Society, p. 30 (2006)

    Google Scholar 

  8. Abdollahi, A., Pedram, M.: Analysis and synthesis of quantum circuits by using quantum decision diagrams. In: Design, Automation and Test in Europe, pp. 317–322 (2006)

    Google Scholar 

  9. Wang, S., Lu, C., Tsai, I., Kuo, S.: An XQDD-based verification method for quantum circuits. IEICE Trans. Fund. 91-A(2), 584–594 (2008)

    Google Scholar 

  10. Viamontes, G.F., Markov, I.L., Hayes, J.P.: Quantum Circuit Simulation. Springer, Dordrecht (2009). https://doi.org/10.1007/978-90-481-3065-8

  11. Niemann, P., Wille, R., Miller, D.M., Thornton, M.A., Drechsler, R.: QMDDs: efficient quantum function representation and manipulation. IEEE Trans. CAD Integr. Circuits Syst. 35(1), 86–99 (2016)

    Google Scholar 

  12. Zulehner, A., Wille, R.: Advanced simulation of quantum computations. IEEE Trans. CAD Integr. Circuits Syst. 38(5), 848–859 (2019)

    Article  Google Scholar 

  13. Vinkhuijzen, L., Coopmans, T., Elkouss, D., Dunjko, V., Laarman, A.: LIMDD a decision diagram for simulation of quantum computing including stabilizer states, CoRR, vol. abs/2108.00931 (2021)

    Google Scholar 

  14. Hong, X., Zhou, X., Li, S., Feng, Y., Ying, M.: A tensor network based decision diagram for representation of quantum circuits (2021). arXiv: 2009.02618 [quant-ph]

  15. Bryant, R.E.: Symbolic Boolean manipulation with ordered binary-decision diagrams. ACM Comput. Surv. 24(3), 293–318 (1992)

    Article  Google Scholar 

  16. Bahar, R.I., et al.: Algebric decision diagrams and their applications. Formal Methods Syst. Des. 10(2–3), 171–206 (1997)

    Article  Google Scholar 

  17. Bryant, R.E.: Graph-based algorithms for boolean function manipulation. IEEE Trans. Comput. C-35(8), 677–691 (1986)

    Google Scholar 

  18. Friedman, S.J., Supowit, K.J.: Finding the optimal variable ordering for binary decision diagrams. In: Design Automation Conference (1987)

    Google Scholar 

  19. Rudell, R.: Dynamic variable ordering for ordered binary decision diagrams. In: International Conference on CAD, pp. 42–47 (1993)

    Google Scholar 

  20. Ishiura, N., Sawada, H., Yajima, S.: Minimization of binary decision diagrams based on exchanges of variables. In: International conference on CAD, pp. 472–473 (1991)

    Google Scholar 

  21. Meinel, C., Slobodova, A.: Speeding up variable reordering of OBDDs. In: International Conference on Computer Design VLSI in Computers and Processors, pp. 338–343 (1997)

    Google Scholar 

  22. Somenzi, F.: Efficient manipulation of decision diagrams. Int. J. Softw. Tools Technol. Transfer 3(2), 171–181 (2001). https://doi.org/10.1007/s100090100042

  23. Meinel, C., Somenzi, F., Theobald, T.: Linear sifting of decision diagrams and its application in synthesis. IEEE Trans. CAD Integr. Circuits Syst. 19(5), 521–533 (2000)

    Google Scholar 

  24. Schaick, S.V., Kent, K.B.: Analysis of variable reordering on the QMDD representation of quantum circuits. In: Euromicro Conf. on Digital System Design, pp. 347–352 (2007)

    Google Scholar 

  25. Miller, D.M., Feinstein, D.Y., Thornton, M.A.: QMDD minimization using sifting for variable reordering. Multiple-Valued Logic Soft Comput. 13(4–6), 537–552 (2007)

    MathSciNet  MATH  Google Scholar 

  26. Miller, D.M., Feinstein, D.Y., Thornton, M.A.: Variable reordering and sifting for QMDD. In: International Symposium on Multi-Valued Logic (2007)

    Google Scholar 

  27. Watrous, J.: The Theory of Quantum Information. Cambridge University Press, Cambridge (2018)

    Google Scholar 

  28. Hillmich, S., Markov, I.L., Wille, R.: Just like the real thing: fast weak simulation of quantum computation. In: Design Automation Conference (2020)

    Google Scholar 

  29. Zulehner, A., Niemann, P., Drechsler, R., Wille, R.: Accuracy and compactness in decision diagrams for quantum computation. In: Design, Automation and Test in Europe, pp. 280–283 (2019)

    Google Scholar 

  30. Jozsa, R.: Quantum algorithms and the fourier transform. R. Soc. London. Ser. A 454(1969), 323–337 (1998)

    Article  MathSciNet  Google Scholar 

  31. Boixo, S., et al.: Characterizing quantum supremacy in near-term devices. Nat. Phys. 14(6), 595–600 (2018)

    Article  Google Scholar 

  32. Tange, O.: GNU parallel: the command-line power tool. Login Usenix Mag. 36(1), 42–47 (2011)

    Google Scholar 

  33. Zulehner, A., Hillmich, S., Wille, R.: How to efficiently handle complex values? Implementing decision diagrams for quantum computing. In: International Conference on CAD (2019)

    Google Scholar 

Download references

Acknowledgments

This work received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No. 101001318), was part of the Munich Quantum Valley, which is supported by the Bavarian state government with funds from the Hightech Agenda Bayern Plus, and has been supported by the BMK, BMDW, and the State of Upper Austria in the frame of the COMET program (managed by the FFG).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Stefan Hillmich , Lukas Burgholzer or Robert Wille .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hillmich, S., Burgholzer, L., Stögmüller, F., Wille, R. (2022). Reordering Decision Diagrams for Quantum Computing Is Harder Than You Might Think. In: Mezzina, C.A., Podlaski, K. (eds) Reversible Computation. RC 2022. Lecture Notes in Computer Science, vol 13354. Springer, Cham. https://doi.org/10.1007/978-3-031-09005-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-09005-9_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-09004-2

  • Online ISBN: 978-3-031-09005-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics