Skip to main content

Fourier Domain CT Reconstruction with Complex Valued Neural Networks

  • Conference paper
  • First Online:
Pattern Recognition and Artificial Intelligence (ICPRAI 2022)

Abstract

In computed tomography, several well-known techniques exist that can reconstruct a cross section of an object from a finite set of it’s projections, the sinogram. This task – the numerical inversion of the Radon transform – is well understood, with state of the art algorithms mostly relying on back-projection. Even though back-projection has a significant computational burden compared to the family of direct Fourier reconstruction based methods, the latter class of algorithms is less popular due to the complications related to frequency space resampling. Moreover, interpolation errors in resampling in frequency domain can lead to artifacts in the reconstructed image. Here, we present a novel neural-network assisted reconstruction method, that intends to reconstruct the object in frequency space, while taking the well-understood Fourier slice theorem into account as well. In our case, the details of approximated resampling is learned by the network for peak performance. We show that with this method it is possible to achieve comparable, and in some cases better reconstruction quality than with another state of the art algorithm also working in frequency domain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Srinivasan, V., Han, Y.K., Ong, S.H.: Image reconstruction by a Hopfield neural network. Image Vis. Comput. 11(5), 278–282 (1993)

    Article  Google Scholar 

  2. Jin, K.H., McCann, M.T., Froustey, E., Unser, M.: Deep convolutional neural network for inverse problems in imaging. IEEE Trans. Image Process. 26(9), 4509–4522 (2017)

    Article  MATH  Google Scholar 

  3. Han, Y.S., Yoo, J., Ye, J.C.: Deep residual learning for compressed sensing CT reconstruction via persistent homology analysis. arXiv preprint arXiv:1611.06391 (2016)

  4. Pelt, D.M., Batenburg, K.J.: Fast tomographic reconstruction from limited data using artificial neural networks. IEEE Trans. Image Process. 22(12), 5238–5251 (2013)

    Article  Google Scholar 

  5. Boublil, D., Elad, M., Shtok, J., Zibulevsky, M.: Spatially-adaptive reconstruction in computed tomography using neural networks. IEEE Trans. Med. Imaging 34(7), 1474–1485 (2015)

    Article  Google Scholar 

  6. Kang, E., Junhong, M., Ye, J.C.: A deep convolutional neural network using directional wavelets for low-dose X-ray CT reconstruction. Med. Phys. 44(10), 360–375 (2017)

    Article  Google Scholar 

  7. Xiao, L., et al.: Partial Fourier reconstruction of complex MR images using complex-valued convolutional neural networks. Magn. Reson. Med. 87(2), 999–1014 (2022)

    Article  Google Scholar 

  8. El-Rewaidy, H., et al.: Deep complex convolutional network for fast reconstruction of 3D late gadolinium enhancement cardiac MRI. NMR Biomed. 33(7), e4312 (2020)

    Article  Google Scholar 

  9. Cole, E.K., et al.: Analysis of deep complex-valued convolutional neural networks for MRI reconstruction. arXiv preprint arXiv:2004.01738 (2020)

  10. Rawat, S., Rana, K.P.S., Kumar, V.: A novel complex-valued convolutional neural network for medical image denoising. Biomed. Sig. Process. Control 69, 102859 (2021)

    Article  Google Scholar 

  11. Dowd, B.A., et al.: Developments in synchrotron x-ray computed microtomography at the National Synchrotron Light Source. In: Developments in X-ray Tomography II, vol. 3772, pp. 224–236. International Society for Optics and Photonics, Denver (1999)

    Google Scholar 

  12. Benvenuto, N., Piazza, F.: On the complex backpropagation algorithm. IEEE Trans. Sig. Process. 40(4), 967–969 (1992)

    Article  Google Scholar 

  13. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  14. Widrow, B., McCool, J., Ball, M.: The complex LMS algorithm. Proc. IEEE 63(4), 719–720 (1975)

    Article  Google Scholar 

  15. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  16. Cooley, J.W., Lewis, P.A.W., Welch, P.D.: The fast Fourier transform and its applications. IEEE Trans. Educ. 12(1), 27–34 (1969)

    Article  Google Scholar 

  17. Marone, F., Stampanoni, M.: Regridding reconstruction algorithm for real-time tomographic imaging. J. Synchrotron Radiat. 19(6), 1029–1037 (2012)

    Article  Google Scholar 

  18. Paleo, P., Desvignes, M., Mirone, A.: A practical local tomography reconstruction algorithm based on a known sub-region. J. Synchrotron Radiat. 24(1), 257–268 (2017)

    Article  Google Scholar 

  19. Gürsoy, D., et al.: TomoPy: a framework for the analysis of synchrotron tomographic data. J. Synchrotron Radiat. 21(5), 1188–1193 (2014)

    Article  Google Scholar 

  20. Zhu, B., Liu, J., Cauley, S., et al.: Image reconstruction by domain-transform manifold learning. Nature 555, 487–492 (2018)

    Article  Google Scholar 

  21. Shepp, L.A., Logan, B.F.: The Fourier reconstruction of a head section. IEEE Trans. Nucl. Sci. 21(3), 21–43 (1974)

    Article  Google Scholar 

  22. Kak, A.C., Slaney, M.: Principles of Computerized Tomographic Imaging, pp. 21–43. Society for Industrial and Applied Mathematics (2001)

    Book  MATH  Google Scholar 

  23. Hirose, A.: Complex-Valued Neural Networks: Theories and Applications, vol. 5. World Scientific (2003)

    Google Scholar 

  24. Keras API Reference. https://keras.io/api/layers. Accessed 11 Jan 2022

Download references

Acknowledgments

The authors would like to thank Rajmund Mokso for supplying the real test dataset for the studies.

This research was supported by Project no. TKP2021-NVA-09. Project no. TKP2021-NVA-09 has been implemented with the support provided by the Ministry of Innovation and Technology of Hungary from the National Research, Development and Innovation Fund, financed under the TKP2021-NVA funding scheme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zoltán Domokos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Domokos, Z., Varga, L.G. (2022). Fourier Domain CT Reconstruction with Complex Valued Neural Networks. In: El Yacoubi, M., Granger, E., Yuen, P.C., Pal, U., Vincent, N. (eds) Pattern Recognition and Artificial Intelligence. ICPRAI 2022. Lecture Notes in Computer Science, vol 13363. Springer, Cham. https://doi.org/10.1007/978-3-031-09037-0_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-09037-0_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-09036-3

  • Online ISBN: 978-3-031-09037-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics