Skip to main content

Inpainting Applied to Facade Images: A Comparison of Algorithms

  • Conference paper
  • First Online:
Pattern Recognition and Artificial Intelligence (ICPRAI 2022)

Abstract

Many municipalities provide textured 3D city models for planning and simulation purposes. Usually, the textures are automatically taken from oblique aerial images. In these images, walls may be occluded by building parts, vegetation and other objects such as cars, traffic signs, etc. To obtain high quality models, these objects have to be segmented and then removed from facade textures. In this study, we investigate the ability of different non-specialized inpainting algorithms to continue facade patterns in occluded facade areas. To this end, non-occluded facade textures of a 3D city model are equipped with various masks simulating occlusions. Then, the performance of the algorithms is evaluated by comparing their results with the original images. In particular, very useful results are obtained with the neural network “DeepFill v2” trained with transfer learning on freely available facade datasets and the “Shift-Map” algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://opencv.org (all websites accessed on January 12, 2022).

  2. 2.

    https://docs.opencv.org/5.x/de/daa/group__xphoto.html.

  3. 3.

    https://www.bezreg-koeln.nrw.de/brk_internet/geobasis/hoehenmodelle/3d-messdaten/index.html.

  4. 4.

    https://www.etsy.com/de/listing/726267122/baum-silhouette-svg-bundle.

  5. 5.

    http://places2.csail.mit.edu/download.html.

  6. 6.

    http://vision.mas.ecp.fr/Personnel/teboul/data.php.

  7. 7.

    http://people.ee.ethz.ch/~daid/FacadeSyn/.

  8. 8.

    https://cmp.felk.cvut.cz/~tylecr1/facade/.

References

  1. Bertalmio, M., Bertozzi, A., Shapiro, G.: Navier-Stokes, fluid dynamics, and image and video inpainting. In: Proceedings of CVPR 2001 (2001). https://doi.org/10.1109/CVPR.2001.990497

  2. Cohen, A., Oswald, M.R., Liu, Y., Pollefeys, M.: Symmetry-aware façade parsing with occlusions. In: Proceedings of 2017 International Conference on 3D Vision (3DV), pp. 393–401 (2017). https://doi.org/10.1109/3DV.2017.00052

  3. Dai, D., Riemenschneider, H., Schmitt, G., Van, L.: Example-based facade texture synthesis. In: Proceedings of 2013 IEEE International Conference on Computer Vision (ICCV), pp. 1065–1072. IEEE Computer Society, Los Alamitos, CA (2013)

    Google Scholar 

  4. Doersch, C., Singh, S., Gupta, A., Sivic, J., Efros, A.: What makes Paris look like Paris? ACM Trans. Graph. 31(4:101), 1–9 (2012)

    Google Scholar 

  5. Genser, N., Seiler, J., Schilling, F., Kaup, A.: Signal and loss geometry aware frequency selective extrapolation for error concealment. In: Proceedings of 2018 Picture Coding Symposium (PCS), pp. 159–163 (2018)

    Google Scholar 

  6. Goebbels, S., Pohle-Fröhlich, R.: Roof reconstruction from airborne laser scanning data based on image processing methods. ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci. III-3, 407–414 (2016)

    Google Scholar 

  7. Goebbels, S., Pohle-Fröhlich, R.: Automatic unfolding of CityGML buildings to paper models. Geographies 1(3), 333–345 (2021)

    Article  Google Scholar 

  8. He, K., Sun, J.: Statistics of patch offsets for image completion. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7573, pp. 16–29. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33709-3_2

    Chapter  Google Scholar 

  9. Hensel, S., Goebbels, S., Kada, M.: LSTM architectures for facade structure completion. In: Proceedings of GRAPP 2021, pp. 15–24 (2021)

    Google Scholar 

  10. Huang, J.B., Kang, S.B., Ahuja, N., Kopf, J.: Image completion using planar structure guidance. ACM Trans. Graph. 33(4), 1–10 (2014)

    Google Scholar 

  11. Kaup, A., Meisinger, K., Aach, T.: Frequency selective signal extrapolation with applications to error concealment in image communication. AEUE - Int. J. Electron. Commun. 59, 147–156 (2005)

    Article  Google Scholar 

  12. Korah, T., Rasmussen, C.: Spatiotemporal inpainting for recovering texture maps of occluded building facades. IEEE Trans. Image Process. 16(9), 2262–2271 (2007)

    Article  Google Scholar 

  13. Kottler, B., Bulatov, D., Zhang, X.: Context-aware patch-based method for façade inpainting. In: Proceedings of GRAPP 2020, pp. 210–218 (2020)

    Google Scholar 

  14. Kottler, B., List, L., Bulatov, D., Weinmann, M.: 3GAN: a three-GAN-based approach for image inpainting applied to the reconstruction of occluded parts of building walls. In: Proceedings of VISAPP 2022 (2022)

    Google Scholar 

  15. Mehra, S., Dogra, A., Goyal, B., Sharma, A.M., Chandra, R.: From textural inpainting to deep generative models: an extensive survey of image inpainting techniques. J. Comput. Sci. 16(1), 35–49 (2020)

    Article  Google Scholar 

  16. Nazeri, K., Ng, E., Joseph, T., Qureshi, F.Z., Ebrahimi, M.: EdgeConnect: generative image inpainting with adversarial edge learning. arXiv Preprint: arXiv: 1901.00212 (2019)

  17. Pritch, Y., Kav-Venaki, E., Peleg, S.: Shift-map image editing. In: Proceedings of 2009 IEEE International Conference on Computer Vision (ICCV), pp. 151–158. IEEE Computer Society, Los Alamitos, CA (2009)

    Google Scholar 

  18. Seiler, J., Jonscher, M., Schöberl, M., Kaup, A.: Resampling images to a regular grid from a non-regular subset of pixel positions using frequency selective reconstruction. IEEE Trans. Image Process. 24(11), 4540–4555 (2015)

    Article  MATH  Google Scholar 

  19. Shen, H., et al.: Missing information reconstruction of remote sensing data: a technical review. IEEE Geosci. Remote Sens. Mag. 3(3), 61–85 (2015)

    Article  Google Scholar 

  20. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: Proceedings of 3rd International Conference on Learning Representations (ICLR) 2015, San Diego, CA, USA (2015)

    Google Scholar 

  21. Telea, A.: An image inpainting technique based on the fast marching method. J. Graph. Tools 9(1), 23–34 (2004)

    Article  Google Scholar 

  22. Tyleček, R., Šára, R.: Spatial pattern templates for recognition of objects with regular structure. In: Weickert, J., Hein, M., Schiele, B. (eds.) GCPR 2013. LNCS, vol. 8142, pp. 364–374. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40602-7_39

    Chapter  Google Scholar 

  23. Wang, Y., Tao, X., Qi, X., Shen, X., Jia, J.: Image inpainting via generative multi-column convolutional neural networks. In: Proceedings of 32nd International Conference on Neural Information Processing Systems, pp. 329–338. NIPS 2018. Curran Associates Inc., Red Hook, NY (2018)

    Google Scholar 

  24. Wonka, P., Wimmer, M., Sillion, F., Ribarsky, W.: Instant architecture. ACM Trans. Graph. 22(3), 669–677 (2003)

    Article  Google Scholar 

  25. Yeh, Y.T., Breeden, K., Yang, L., Fisher, M., Hanrahan, P.: Synthesis of tiled patterns using factor graphs. ACM Trans. Graph. 32(1), 1–13 (2013)

    Article  MATH  Google Scholar 

  26. Yu, J., Lin, Z., Yang, J., Shen, X., Lu, X., Huang, T.: Generative image inpainting with contextual attention. In: Proceedings of CVPR 2018, arXiv preprint arXiv:1801.07892 (2018)

  27. Yu, J., Lin, Z., Yang, J., Shen, X., Lu, X., Huang, T.: Free-form image inpainting with gated convolution. In: Proceedings of CVPR 2019, arXiv preprint arXiv:1806.03589 (2019)

  28. Zhang, J., Fukuda, T., Yabuki, N.: Automatic object removal with obstructed façades completion using semantic segmentation and generative adversarial inpainting. IEEE Access 9, 117486–117495 (2021)

    Article  Google Scholar 

  29. Zhou, B., Lapedriza, A., Khosla, A., Oliva, A., Torralba, A.: A 10 million image database for scene recognition. IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI) 40(6), 1452–14649 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by a generous hardware grant from NVIDIA. The authors thank Udo Hannok from the cadastral office of the city of Krefeld for providing the oblique aerial images. The authors are also grateful to Regina Pohle-Fröhlich for valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steffen Goebbels .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fritzsche, W., Goebbels, S., Hensel, S., Rußinski, M., Schuch, N. (2022). Inpainting Applied to Facade Images: A Comparison of Algorithms. In: El Yacoubi, M., Granger, E., Yuen, P.C., Pal, U., Vincent, N. (eds) Pattern Recognition and Artificial Intelligence. ICPRAI 2022. Lecture Notes in Computer Science, vol 13363. Springer, Cham. https://doi.org/10.1007/978-3-031-09037-0_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-09037-0_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-09036-3

  • Online ISBN: 978-3-031-09037-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics