Skip to main content

Visual Microfossil Identification via Deep Metric Learning

  • Conference paper
  • First Online:
Pattern Recognition and Artificial Intelligence (ICPRAI 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13363))

  • 2026 Accesses

Abstract

We apply deep metric learning for the first time to the problem of classifying planktic foraminifer shells on microscopic images. This species recognition task is an important information source and scientific pillar for reconstructing past climates. All foraminifer CNN recognition pipelines in the literature produce black-box classifiers that lack visualisation options for human experts and cannot be applied to open set problems. Here, we benchmark metric learning against these pipelines, produce the first scientific visualisation of the phenotypic planktic foraminifer morphology space, and demonstrate that metric learning can be used to cluster species unseen during training. We show that metric learning outperforms all published CNN-based state-of-the-art benchmarks in this domain. We evaluate our approach on the 34,640 expert-annotated images of the Endless Forams public library of 35 modern planktic foramini-fera species. Our results on this data show leading \(92\%\) accuracy (at 0.84 F1-score) in reproducing expert labels on withheld test data, and \(66.5\%\) accuracy (at 0.70 F1-score) when clustering species never encountered in training. We conclude that metric learning is highly effective for this domain and serves as an important tool towards expert-in-the-loop automation of microfossil identification. Key code, network weights, and data splits are published with this paper for full reproducibility.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Tail classes 1, 5, 9, 14, 22, 23, 26, 29, 33, and 34 were chosen as our open set to have maximum specimen counts available during training.

References

  1. Al-Sabouni, N., Fenton, I., Telford, R., Kučera, M.: Reproducibility of species recognition in modern planktonic foraminifera and its implications for analyses of community structure. J. Micropalaeontol. 37, 519–534 (2018)

    Article  Google Scholar 

  2. Andrew, W., Gao, J., Mullan, S., Campbell, N., Dowsey, A.W., Burghardt, T.: Visual identification of individual Holstein-Friesian cattle via deep metric learning. Comput. Electron. Agric. 185, 106133 (2021)

    Article  Google Scholar 

  3. Aurahs, R., Treis, Y., Darling, K., Kucera, M.: A revised taxonomic and phylogenetic concept for the planktonic foraminifer species Globigerinoides Ruber based on molecular and morphometric evidence. Mar. Micropaleontol. 79, 1–14 (2011)

    Article  Google Scholar 

  4. Balfoort, H., Snoek, J., Smiths, J., Breedveld, L., Hofstraat, J., Ringelberg, J.: Automatic identification of Algae: neural network analysis of flow cytometric data. J. Plankton Res. 14, 575–589 (1992)

    Article  Google Scholar 

  5. Beaufort, L., Dollfus, D.: Automatic recognition of coccoliths by dynamical neural networks. Mar. Micropaleontol. 51, 57–73 (2004)

    Article  Google Scholar 

  6. Beaufort, L., et al.: Sensitivity of coccolithophores to carbonate chemistry and ocean acidification. Nature 476, 80–83 (2011)

    Article  Google Scholar 

  7. Bown, P., Huber, B., Wade, B., Young, J.: pforams@mikrotax - introduction (2020). https://www.mikrotax.org/pforams/. Accessed 01 May 2021

  8. Bozinovski, S., Fulgosi, A.: The use of artificial neural networks to classify primate vocalizations: a pilot study on black Lemurs. Am. J. Primatol. 1098–2345 (2009)

    Google Scholar 

  9. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995)

    Article  MATH  Google Scholar 

  10. Elder, L.E., Hsiang, A.Y., Nelson, K., Strotz, L.C., Kahanamoku, S.S., Hull, P.M.: Sixty-one thousand recent planktonic foraminifera from the Atlantic Ocean. Sci. Data 5 (2018)

    Google Scholar 

  11. Franz, N.: On the lack of good scientific reasons for the growing phylogeny/classification gap. Cladistics 21, 495–500 (2005)

    Article  Google Scholar 

  12. Gandhi, G., Srivastava, R.: Review paper: A comparative study on partitioning techniques of clustering algorithms. International Journal of Computer Applications 87 (01 2014)

    Google Scholar 

  13. Hadsell, R., Chopra, S., LeCun, Y.: Dimensionality reduction by learning an invariant mapping. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2006), vol. 2, pp. 1735–1742 (2006)

    Google Scholar 

  14. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition (2015)

    Google Scholar 

  15. Hemleben, C., Spindler, M., Anderson, O.: Modern Planktonic Foraminifera, p. 363. Springer, Cham (1989). https://doi.org/10.1007/978-1-4612-3544-6

  16. Hermans, A., Beyer, L., Leibe, B.: In defense of the triplet loss for person re-identification (2017)

    Google Scholar 

  17. Hodan, T., Haluza, P., Obdrzalek, S., Matas, J., Lourakis, M., Zabulis, X.: T-LESS: An RGB-D dataset for 6D pose estimation of texture-less objects. In: Winter Conference on Applications of Computer Vision (WACV). IEEE, 880–888 (2017)

    Google Scholar 

  18. Hodges, L.: Nonparametric discrimination: Consistency properties. USAF School of Aviation Medicine (1951)

    Google Scholar 

  19. Hsiang, A.Y., et al.: Endless Forams: \(>\) 34,000 modern planktonic foraminiferal images for taxonomic training and automated species recognition using convolutional neural networks. Paleoceanography Paleoclimatol. 34, 1157–1177 (2019)

    Article  Google Scholar 

  20. Huber, B., Bijma, J., Darling, K.: Cryptic speciation in the living planktonic foraminifer Globigerinella siphoniphera (d’Orbigny). Paleobiology 23, 33–62 (1997)

    Article  Google Scholar 

  21. Hull., P.M., Hsiang, A.Y.: Endless Forams Most Beautiful (2020). http://endlessforams.org. Accessed 01 May 2021

  22. Johnson, S.C.: Hierarchical clustering schemes. Psychometrika 32, 241–254 (1967)

    Article  MATH  Google Scholar 

  23. Karaderi, T.: Visual microfossil identification via deep metric learning (2022). https://github.com/TayfunKaraderi/ICPRAI-2022-Visual-Microfossil-Identification-via-Deep-Metric-Learning. Accessed 19 Mar 2022

  24. Krizhevsky, A., Sutskever, I., Hinton, G.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  25. Kucera, M.: Planktonic foraminifera as tracers of past oceanic environments. In: Hillaire-Marcel, C., De Vernal, A. (eds.) pp. 213–262 (2007)

    Google Scholar 

  26. Kühl, H.S., Burghardt, T.: Animal biometrics: quantifying and detecting phenotypic appearance. Trends Ecol. Evol. 28(7), 432–441 (2013)

    Article  Google Scholar 

  27. Lagunes-Fortiz, M., Damen, D., Mayol-Cuevas, W.: Learning discriminative embeddings for object recognition on-the-y. In: 2019 International Conference on Robotics and Automation (ICRA). IEEE, pp. 2932–2938 (2019)

    Google Scholar 

  28. van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9, 2579–2605 (2008)

    MATH  Google Scholar 

  29. Malmgren, B., Kennett, J.: Biometric analysis of phenotypic variation in recent globigerina bulloides d’Orbigny in the southern Indian ocean. Mar. Micropaleontol. 1, 2–25 (1976)

    Article  Google Scholar 

  30. Marchant, R., Tetard, M., Pratiwi, A., Adebayo, M., de Garidel-Thoron, T.: Automated analysis of foraminifera fossil records by image classification using a convolutional neural network. J. Micropalaeontol. 39(2), 183–202 (2020)

    Article  Google Scholar 

  31. Masullo, A., Burghardt, T., Damen, D., Perrett, T., Mirmehdi, M.: Who goes there? Exploiting silhouettes and wearable signals for subject identification in multi-person environments. In: Proceedings of the IEEE International Conference on Computer Vision Workshops, pp. 1599–1607 (2019)

    Google Scholar 

  32. Mitra, R., Marchitto, T., Ge, Q., Zhong, B., Kanakiya, B., Cook, M., Fehrenbacher, J., Ortiz, J., Tripati, A., Lobaton, E.: Automated species-level identification of planktic foraminifera using convolutional neural networks, with comparison to human performance. Mar. Micropaleontol. 147, 16–24 (2019)

    Article  Google Scholar 

  33. Pacifico, L.D.S., Macario, V., Oliveira, J.F.L.: Plant classification using artificial neural networks. In: IJCNN, pp. 1–6 (2018)

    Google Scholar 

  34. Ravelo, A.C., Hillaire-Marcel, C.: The use of oxygen and carbon isotopes of foraminifera in paleoceanography. In: Developments in Marine Geology, vol. 1. Elsevier (2007)

    Google Scholar 

  35. Renaud, S., Schmidt, D.: Habitat tracking as a response of the planktic foraminifer Globorotalia truncatulinoides to environmental fluctuations during the last 140 kyr. Mar. Micropaleontol. 49, 97–122 (2003)

    Article  Google Scholar 

  36. Reynolds, D.A.: Gaussian mixture models. Encyclopedia Biometrics (2009)

    Google Scholar 

  37. Rillo, M.C., Whittaker, J., Ezard, T.H., Purvis, A., Henderson, A., Stukins, S., Miller, C.: The unknown planktonic foraminiferal pioneer Henry A. Buckley and his collection at The Natural History Museum. J. Micropalaeontol. 36, 191–194 (2016)

    Google Scholar 

  38. Ruder, S.: An overview of gradient descent optimization algorithms. arXiv preprint arXiv:1609.04747 (2016)

  39. Schmidt, D., Renaud, S., Bollmann, J., Schiebel, R., Thierstein, H.: Size distribution of Holocene planktic foraminifer assemblages: biogeography, ecology and adaptation. Mar. Micropaleontol. 50, 319–338 (2004)

    Article  Google Scholar 

  40. Schneider, S., Taylor, G.W., Linquist, S.S., Kremer, S.C.: Similarity learning networks for animal individual re-identification - beyond the capabilities of a human observer. WACV abs/1902.09324 (2019). http://arxiv.org/abs/1902.09324

  41. Schroff, F., Kalenichenko, D., Philbin, J.: FaceNet: a united embedding for face recognition and clustering. Proc. IEEE Conf. Comput. Vis. Pattern Recognit. 2, 815–823 (2015)

    Google Scholar 

  42. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition (2015)

    Google Scholar 

  43. Sluys, R.: The unappreciated, fundamentally analytical nature of taxonomy and the implications for the inventory of biodiversity. Biodivers. Conserv. 22, 1095–1105 (2013)

    Article  Google Scholar 

  44. Szegedy, C., et al.: Going deeper with convolutions. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1–9 (2015)

    Google Scholar 

  45. Tan, D., Ang, Y., Lim, G., Ismail, M., Meier, R.: From ‘cryptic species’ to integrative taxonomy: an iterative process involving DNA sequences, morphology, and behaviour leads to the resurrection of Sepsis pyrrhosoma (sepsidae: Diptera). Zoolog. Scr. 39, 51–61 (2010)

    Article  Google Scholar 

  46. Tuia, D., et al.: Seeing biodiversity: perspectives in machine learning for wildlife conservation. arXiv preprint arXiv:2110.12951 (2021)

  47. Vaswani, A., et al.: Attention is all you need. CoRR 1706, 03762 (2017)

    Google Scholar 

  48. Weller, A., Harris, A., Ware, J.: Two supervised neural networks for classification of sedimentary organic matter images from palynological preparations. Math. Geol. 39, 657–671 (2007)

    Article  Google Scholar 

  49. Wägele, H., et al.: The taxonomist - an endangered race. A practical proposal for its survival. Front. Zool. 8, 25 (2011)

    Google Scholar 

  50. Xie, S., Girshick, R., Dollár, P., Tu, Z., He, K.: Aggregated residual transformations for deep neural networks (2017)

    Google Scholar 

Download references

Acknowledgements

TK was supported by the UKRI CDT in Interactive Artificial Intelligence under the grant EP/S022937/1. AYH was supported by VR grant 2020-03515. DNS was supported by NERC grant NE/P019439/1. We thank R Marchant and his team for making available source code and testing regime details to compare to [30]. Thanks to M Lagunes-Fortiz and W Andrew for permitting use and adaptation of source code related to metric learning.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tayfun Karaderi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Karaderi, T., Burghardt, T., Hsiang, A.Y., Ramaer, J., Schmidt, D.N. (2022). Visual Microfossil Identification via Deep Metric Learning. In: El Yacoubi, M., Granger, E., Yuen, P.C., Pal, U., Vincent, N. (eds) Pattern Recognition and Artificial Intelligence. ICPRAI 2022. Lecture Notes in Computer Science, vol 13363. Springer, Cham. https://doi.org/10.1007/978-3-031-09037-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-09037-0_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-09036-3

  • Online ISBN: 978-3-031-09037-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics