Skip to main content

Discrimination Between Stroke and Brain Tumour in CT Images Based on the Texture Analysis

  • Conference paper
  • First Online:
Information Technology in Biomedicine (ITIB 2022)

Abstract

The brain is one of the most important organs in the human body because it is its control centre, and any disease of the brain is a real threat to human life. A brain tumour is a newly formed, foreign structure, whose growth causes an increase in intracranial tightness. A stroke is defined as a sudden neurological deficit caused by central nervous system ischemia or haemorrhage. CT is a routine examination when these diseases are suspected. However, the distinction between stroke and tumour is not always straightforward, even for experienced radiologists. There are solutions for detecting each disease separately, but there is no system that would support distinguishing of both diseases. Therefore, the aim of this work is to develop a system that allows discrimination between a stroke and a brain tumour on CT images based on the analysis of the texture features calculated for the region of interest marked by radiologist. Next, feature selection was performed by Fisher criterion and convex hull approach. Finally, selected features were classified with use of the Classification Learner application available in MATLAB R2021b. Classification methods based on classification trees, k-nearest neighbours (KNN), and support vector machine (SVM) gave the best classification results. It was demonstrated that classification accuracy reached over 95% for the analysed feature set that is promising result in semiautomatic discrimination between stroke and tumour in CT data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chawla, M., Sharma, S., Sivaswamy, J., Kishore, L.T.: A method for automatic detection and classification of stroke from brain CT images. In: Proceedings of the 31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society: Engineering the Future of Biomedicine, EMBC 2009, pp. 3581–3584 (2009). https://doi.org/10.1109/IEMBS.2009.5335289

  2. Chrzanowski, L., Drozdz, J., Strzelecki, M., Krzeminska-Pakula, M., Jedrzejewski, K.S., Kasprzak, J.D.: Application of neural networks for the analysis of intravascular ultrasound and histological aortic wall appearance - an in vitro tissue characterization study. Ultrasound Med. Biol. 34, 103–113 (2008). https://doi.org/10.1016/J.ULTRASMEDBIO.2007.06.021

    Article  Google Scholar 

  3. Dourado, C.M., da Silva, S.P.P., da Nóbrega, R.V.M., Antonio, A.C., Filho, P.P., de Albuquerque, V.H.C.: Deep learning IoT system for online stroke detection in skull computed tomography images. Comput. Netw. 152, 25–39 (2019). https://doi.org/10.1016/J.COMNET.2019.01.019

    Article  Google Scholar 

  4. Fahmi, F., Apriyulida, F., Nasution, I.K., Sawaluddin: Automatic detection of brain tumor on computed tomography images for patients in the intensive care unit. J. Healthc. Eng. 2020 (2020). https://doi.org/10.1155/2020/2483285

  5. Gentillon, H., Stefańczyk, L., Strzelecki, M., Respondek-Liberska, M.: Parameter set for computer-assisted texture analysis of fetal brain. BMC Res. Notes 9, 1–18 (2016). https://doi.org/10.1186/S13104-016-2300-3/TABLES/2. https://link.springer.com/articles/10.1186/s13104-016-2300-3

  6. Ghosh, M.K., Chakraborty, D., Sarkar, S., Bhowmik, A., Basu, M.: The interrelationship between cerebral ischemic stroke and glioma: a comprehensive study of recent reports. Sign. Transduct. Target. Ther. 4(1), 1–13 (2019). https://doi.org/10.1038/s41392-019-0075-4

    Article  Google Scholar 

  7. Gośliński, J.: Nowotwory układu nerwowego - przyczyny i rodzaje - zwrotnik raka.pl (2019). https://www.zwrotnikraka.pl/przyczyny-rodzaje-guzow-mozgu

  8. Hatzitolios, A., et al.: Stroke and conditions that mimic it: a protocol secures a safe early recognition. Hippokratia 12(2), 98 (2008)

    Google Scholar 

  9. Janowski, P., Strzelecki, M., Brzezinska-Blaszczyk, E., Zalewska, A.: Computer analysis of normal and basal cell carcinoma mast cells. Med. Sci. Monit. 7(2), 260–265 (2001)

    Google Scholar 

  10. Kalmutskiy, K., Tulupov, A., Berikov, V.: Recognition of tomographic images in the diagnosis of stroke. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 12665 LNCS, pp. 166–171 (2021). https://doi.org/10.1007/978-3-030-68821-9_16

  11. Kociołek, M., Strzelecki, M., Obuchowicz, R.: Does image normalization and intensity resolution impact texture classification? Comput. Med. Imaging Graph. 81, 101,716 (2020). https://doi.org/10.1016/j.compmedimag.2020.101716

  12. Kłos-Wojtczak, P.: Mózg człowieka - jaka jest jego budowa i funkcje? hellozdrowie (2019). https://www.hellozdrowie.pl/mozg-czlowieka-anatomia-i-fizjologia-organu/

  13. Morgenstern, L.B., Frankowski, R.F.: Brain tumor masquerading as stroke. J. Neurooncol. 44(1), 47–52 (1999). https://doi.org/10.1023/A:1006237421731

    Article  Google Scholar 

  14. Nanthagopal, A.P., Rajamony, R.S.: A region-based segmentation of tumour from brain CT images using nonlinear support vector machine classifier. J. Med. Eng. Technol. 36, 271–277 (2012). https://doi.org/10.3109/03091902.2012.682638. https://pubmed.ncbi.nlm.nih.gov/22621242/

  15. Nedel’ko, V., Kozinets, R., Tulupov, A., Berikov, V.: Comparative analysis of deep neural network and texture-based classifiers for recognition of acute stroke using non-contrast CT images. In: Proceedings - 2020 Ural Symposium on Biomedical Engineering, Radioelectronics and Information Technology, USBEREIT 2020, pp. 376–379 (2020). https://doi.org/10.1109/USBEREIT48449.2020.9117784

  16. Obuchowicz, R., Kruszyńska, J., Strzelecki, M.: Classifying median nerves in carpal tunnel syndrome: ultrasound image analysis. Biocybern. Biomed. Eng. 41(2), 335–351 (2021). https://doi.org/10.1016/j.bbe.2021.02.011

    Article  Google Scholar 

  17. Ostrek, G., Przelaskowski, A.: Automatic early stroke recognition algorithm in CT images. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 7339 LNBI, pp. 101–109 (2012). https://doi.org/10.1007/978-3-642-31196-3_11. https://link.springer.com/chapter/10.1007/978-3-642-31196-3_11

  18. Prodi, E., et al.: Stroke mimics in the acute setting: role of multimodal CT protocol. Am. J. Neuroradiol. (2022). https://doi.org/10.3174/ajnr.A7379

  19. Qasem, S.N., Nazar, A., Qamar, A., Shamshirband, S., Karim, A.: A learning based brain tumor detection system. Comput. Mater. Cont. 59, 713–727 (2019). https://doi.org/10.32604/CMC.2019.05617

  20. Raciborski, F., Gawińska, E., Kłak, A., Słowik, A., Wnuk, M.: Udary mózgu: rosnący problem w starzejącym się społeczeństwie. Instytut Ochrony Zdrowia (2016)

    Google Scholar 

  21. Ramakrishnan, T., Sankaragomathi, B.: A professional estimate on the computed tomography brain tumor images using SVM-SMO for classification and MRG-GWO for segmentation. Patt. Recogn. Lett. 94, 163–171 (2017). https://doi.org/10.1016/J.PATREC.2017.03.026. https://dl.acm.org/doi/abs/10.1016/j.patrec.2017.03.026

  22. (red.), S.M.: Radiologia - diagnostyka obrazowa, część II. Akademia Medyczna w Gdańsku (2001)

    Google Scholar 

  23. Sobotko-Waszczeniuk, O., Łukasiewicz, A., Pyd, E., Janica, J.R., Łebkowska, U.: Differentiation of density of ischaemic brain tissue in computed tomography with respect to neurological deficit in acute and subacute period of Ischaemic stroke. Polish J. Radiol. 74(3) (2009)

    Google Scholar 

  24. Strzelecki, M.: Texture boundary detection using network of synchronised oscillators. Electron. Lett. 40, 466–467 (2004). https://doi.org/10.1049/EL:20040330

    Article  Google Scholar 

  25. Strzelecki, M., Kociołek, M., Materka, A.: On the influence of image features wordlength reduction on texture classification. In: International Conference on Information Technologies in Biomedicine, pp. 15–26. Springer (2018). https://doi.org/10.1007/978-3-319-91211-0_2

  26. Szczypinski, P.M., Klepaczko, A., Kociolek, M.: Qmazda - software tools for image analysis and pattern recognition, pp. 217–221. IEEE Computer Society (2017). https://doi.org/10.23919/SPA.2017.8166867

  27. Szczypiński, P.M.: qmazda manual (2020). http://www.eletel.p.lodz.pl/pms/Programy/qmazda.pdf

  28. Šušteršič, T., Peulić, M., Filipović, N., Peulić, A.: Application of active contours method in assessment of optimal approach trajectory to brain tumor. In: 2015 IEEE 15th International Conference on Bioinformatics and Bioengineering, BIBE 2015 (2015). https://doi.org/10.1109/BIBE.2015.7367661

Download references

Acknowledgement

We would like to thank to Professor Andrzej Klimek, former head of the Department of Neurology and Strokes, Medical University of Lodz who initiated this study and provided CT data for analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michał Strzelecki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kobus, M., Sobczak, K., Jangas, M., Świątek, A., Strzelecki, M. (2022). Discrimination Between Stroke and Brain Tumour in CT Images Based on the Texture Analysis. In: Pietka, E., Badura, P., Kawa, J., Wieclawek, W. (eds) Information Technology in Biomedicine. ITIB 2022. Advances in Intelligent Systems and Computing, vol 1429. Springer, Cham. https://doi.org/10.1007/978-3-031-09135-3_15

Download citation

Publish with us

Policies and ethics