Abstract
Registration of images from re-stained tissue sections is an initial step in generating ground truth image data for machine learning applications in histopathology. In this paper, we focused on evaluating existing feature-based and intensity-based registration methods using regions of interest (ROIs) extracted from whole slide images (n = 25) of human ileum that was first stained with hematoxylin and eosin (H&E) and then re-stained with immunohistochemistry (IHC). Elastic and moving least squares deformation models with rigid, affine and similarity feature matching were compared with intensity-based methods utilizing an optimizer to find rigid and affine transformation parameters. Corresponding color H&E and IHC ROIs were registered through gray-level luminance and deconvoluted hematoxylin images. Our goal was to identify methods that can yield a high number of correctly registered ROIs and low median (MTRE) and average (ATRE) target registration errors. Based on the benchmark landmarks (n = 5020) placed across the ROIs, the elastic deformation model with rigid matching and the intensity-based rigid registrations on color-deconvoluted hematoxylin channels yielded the highest (86%, 100%) rates of correctly registered ROIs. For these two methods, the MTRE was 2.00 and 2.12 pixels (\(0.982\) \(\,\upmu \) m, \(1.04\) \(\,\upmu \) m), and ATRE was 3.14 and 4.0 pixels (1.54\(\,\upmu \) m, 1.964\(\,\upmu \) m), respectively. Although the intensity-based rigid registration was the slowest of all methods tested, it may be more practical in use due to the highest rate of correctly registered ROIs and the second-best MTRE. The WSIs and ROIs with landmarks that we prepared can be valuable in benchmarking other image registration approaches.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Anand, D., et al.: Deep learning to estimate human epidermal growth factor receptor 2 status from hematoxylin and eosin-stained breast tissue images. J. Pathol. Inform. 11, 19 (2020). https://doi.org/10.4103/jpi.jpi_10_20
Arganda-Carreras, I., Sorzano, C.O.S., Marabini, R., Carazo, J.M., Ortiz-de-Solorzano, C., Kybic, J.: Consistent and elastic registration of histological sections using vector-spline regularization. In: Beichel, R.R., Sonka, M. (eds.) CVAMIA 2006. LNCS, vol. 4241, pp. 85–95. Springer, Heidelberg (2006). https://doi.org/10.1007/11889762_8
Borovec, J., et al.: Anhir: automatic non-rigid histological image registration challenge. IEEE Trans. Med. Imaging PP, 1–1 (2020). https://doi.org/10.1109/TMI.2020.2986331
Bulten, W., et al.: Epithelium segmentation using deep learning in h&e-stained prostate specimens with immunohistochemistry as reference standard. Scientific Reports 9, 864 (2019). https://doi.org/10.1038/s41598-018-37257-4
Bándi, P., Balkenhol, M., Ginneken, B., Laak, J., Litjens, G.: Resolution-agnostic tissue segmentation in whole-slide histopathology images with convolutional neural networks. PeerJ 7, e8242 (2019). https://doi.org/10.7717/peerj.8242
Chen, C.T.: Radiologic image registration: old skills and new tools. Acad. Radiol. 10, 239–41 (2003)
Cooper, L., Sertel, O., Kong, J., Lozanski, G., Huang, K., Gurcan, M.: Feature-based registration of histopathology images with different stains: an application for computerized follicular lymphoma prognosis. Comput. Methods Programs Biomed. 96, 182–92 (2009). https://doi.org/10.1016/j.cmpb.2009.04.012
Fedorov, A., et al.: 3D slicer as an image computing platform for the quantitative imaging network. Magnetic Resonance Imaging 30, 1323–41 (2012). https://doi.org/10.1016/j.mri.2012.05.001. https://www.slicer.org
Fitzpatrick, J., West, J.: The distribution of target registration error in rigid-body point-based registration. IEEE Trans. Med. Imaging 20(9), 917–927 (2001). https://doi.org/10.1109/42.952729
Gallego, J., Swiderska, Z., Markiewicz, T., Yamashita, M., Gabaldon, M., Gertych, A.: A u-net based framework to quantify glomerulosclerosis in digitized pas and h&e stained human tissues. Computerized Medical Imaging and Graphics 89, 101,865 (2021). https://doi.org/10.1016/j.compmedimag.2021.101865
Ghahremani, M., et al.: Rigid Registration, pp. 1087–1099. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-63416-2_184
Gonzalez, D., Frafjord, A., Øynebråten, I., Corthay, A., Olivo-Marin, J.C., Meas-Yedid, V.: Multi-staining registration of large histology images. In: 2017 IEEE 14th International Symposium on Biomedical Imaging, pp. 345–348 (2017). https://doi.org/10.1109/ISBI.2017.7950534
Hatipoglu, N., Bilgin, G.: Cell segmentation in histopathological images with deep learning algorithms by utilizing spatial relationships. Med. Biol. Eng. Comput. 55(10), 1829–1848 (2017). https://doi.org/10.1007/s11517-017-1630-1
Hinton, J., et al.: A method to reuse archived h&e stained histology slides for a multiplex protein biomarker analysis. Methods Prot. 2, 86 (2019). https://doi.org/10.3390/mps2040086
Ing, N., et al.: A novel machine learning approach reveals latent vascular phenotypes predictive of renal cancer outcome. Sci. Rep. 7 (2017). https://doi.org/10.1038/s41598-017-13196-4
Jiang, J., Larson, N., Prodduturi, N., Flotte, T., Hart, S.: Robust hierarchical density estimation and regression for re-stained histological whole slide image co-registration. PLoS ONE 14, e0220,074 (2019). https://doi.org/10.1371/journal.pone.0220074
Johnson, H., Christensen, G.: Consistent landmark and intensity-based image registration. IEEE Trans. Med. Imaging 21, 450–61 (2002). https://doi.org/10.1109/TMI.2002.1009381
Kuska, J.P., et al.: Image registration of differently stained histological sections. In: 2006 International Conference on Image Processing, pp. 333–336 (2006). https://doi.org/10.1109/ICIP.2006.313161
Kybic, J., Dolejší, M., Borovec, J.: Fast registration of segmented images by normal sampling. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition Workshops (2015). https://doi.org/10.1109/CVPRW.2015.7301311
Lotz, J., Weiss, N., van der Laak, J., Heldmann, S.: High-resolution image registration of consecutive and re-stained sections in histopathology (2021). ArXiv:2106.13150
Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vision 60(2), 91–110 (2004). https://doi.org/10.1023/b:visi.0000029664.99615.94
Ma, Z., et al.: Semantic segmentation of colon glands in inflammatory bowel disease biopsies. In: Pietka, E., Badura, P., Kawa, J., Wieclawek, W. (eds.) ITIB 2018. AISC, vol. 762, pp. 379–392. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-91211-0_34
Maes, F., Vandermeulen, D., Suetens, P.: Medical image registration using mutual information. Proc. IEEE 91(10), 1699–1722 (2003). https://doi.org/10.1109/jproc.2003.817864
Menon, H., Narayanankutty, K.A.: Applicability of non-rigid medical image registration using moving least squares. Int. J. Comput. Appl. 1, 85–92 (2010). https://doi.org/10.5120/138-256
Mäkelä, T., et al.: A review of cardiac image registration methods. IEEE Trans. Med. Imaging 21, 1011–21 (2002). https://doi.org/10.1109/TMI.2002.804441
Nirschl, J., et al.: Chapter 8 - Deep Learning Tissue Segmentation in Cardiac Histopathology Images, pp. 179–195. Academic Press (2017). https://doi.org/10.1016/B978-0-12-810408-8.00011-0
Oliveira, F.P., Tavares, J.M.R.: Medical image registration: a review. Comput. Methods Biomech. Biomed. Engin. 17(2), 73–93 (2014). https://doi.org/10.1080/10255842.2012.670855
Ourselin, S., Roche, A., Subsol, G., Pennec, X., Ayache, N.: Reconstructing a 3D structure from serial histological sections. Image Vis. Comput. 19, 25–31 (2001). https://doi.org/10.1016/S0262-8856(00)00052-4
Pantanowitz, L., et al.: Review of the current state of whole slide imaging in pathology. J. Pathol. Inform. 2, 36 (2011). https://doi.org/10.4103/2153-3539.83746
Pitiot, A., Bardinet, E., Thompson, P., Malandain, G.: Piecewise affine registration of biological images for volume reconstruction. Med. Image Anal. 10, 465–83 (2006). https://doi.org/10.1016/j.media.2005.03.008
Pyciński, B., Yagi, Y., Walts, A.E., Gertych, A.: 3-D tissue image reconstruction from digitized serial histologic sections to visualize small tumor nests in lung adenocarcinomas. In: Pietka, E., Badura, P., Kawa, J., Wieclawek, W. (eds.) Information Technology in Biomedicine. AISC, vol. 1186, pp. 55–70. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-49666-1_5
Ruifrok, A.C., Johnston, D.A.: Quantification of histochemical staining by color deconvolution. Anal. Quant. Cytol. Histol. 23(4), 291–299 (2001)
Ruusuvuori, P., et al.: Spatial analysis of histology in 3D: quantification and visualization of organ and tumor level tissue environment. Heliyon p. e08762 (2022). https://doi.org/10.1016/j.heliyon.2022.e08762
Schaefer, S., McPhail, T., Warren, J.: Image deformation using moving least squares. In: ACM SIGGRAPH 2006 Papers on - SIGGRAPH 2006. ACM Press (2006). https://doi.org/10.1145/1179352.1141920
Schindelin, J., et al.: Fiji: an open-source platform for biological-image analysis. Nat. Methods 9(7), 676–682 (2012). https://doi.org/10.1038/nmeth.2019
Styner, M., Brechbuhler, C., Szckely, G., Gerig, G.: Parametric estimate of intensity inhomogeneities applied to MRI. IEEE Trans. Med. Imaging 19(3), 153–165 (2000). https://doi.org/10.1109/42.845174
Williams, J.M., Duckworth, C.A., Vowell, K., Burkitt, M.D., Pritchard, D.M.: Intestinal preparation techniques for histological analysis in the mouse. Curr. Prot. Mouse Biol. 6(2), 148–168 (2016). https://doi.org/10.1002/cpmo.2
Acknowledgement
This project was in part supported by the grant from the Helmsley Charitable Trust and the grants from the Silesian University of Technology no. BK-231/RIB1/2022 and 31/010/SDU20/0006-10 (Excellence Initiative – Research University). The authors would also like to thank the Cedars-Sinai Biobank for preparation and digitization of slides.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Cyprys, P., Wyleżoł, N., Jagodzińska, A., Uzdowska, J., Pyciński, B., Gertych, A. (2022). Rigid and Elastic Registrations Benchmark on Re-stained Histologic Human Ileum Images. In: Pietka, E., Badura, P., Kawa, J., Wieclawek, W. (eds) Information Technology in Biomedicine. ITIB 2022. Advances in Intelligent Systems and Computing, vol 1429. Springer, Cham. https://doi.org/10.1007/978-3-031-09135-3_23
Download citation
DOI: https://doi.org/10.1007/978-3-031-09135-3_23
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-09134-6
Online ISBN: 978-3-031-09135-3
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)