Skip to main content

DVT: Application of Deep Visual Transformer in Cervical Cell Image Classification

  • Conference paper
  • First Online:
Book cover Information Technology in Biomedicine (ITIB 2022)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1429))

Included in the following conference series:

Abstract

Cervical cancer is a very common cancer among women. Cytopathologists use a microscope to examine cell slides collected from the patient’s cervix to determine if it is cancerous. However, manually checking the slides to diagnose cancer is a very difficult task, not only time-consuming but also error-prone. A computer-aided diagnosis system can automatically and accurately screen cervical cell images. In this study, we propose a framework called DVT to perform classification tasks. We use SIPaKMeD and CRIC datasets together. On 11-class classification tasks, DVT achieves an accuracy of 87.35%. In the comparative experiment, DVT performs better than the CNN and VT models alone.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Šarenac, T., Mikov, M.: Cervical cancer, different treatments and importance of bile acids as therapeutic agents in this disease. Front. Pharmacol. 10, 484 (2019)

    Article  Google Scholar 

  2. Saslow, D., et al.: American cancer society, American society for colposcopy and cervical pathology, and American society for clinical pathology screening guidelines for the prevention and early detection of cervical cancer. CA Cancer J. Clin. 62(3), 147–172 (2012)

    Article  Google Scholar 

  3. Dosovitskiy, A., et al.: An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020), https://arxiv.org/abs/2010.11929

  4. Plissiti, M.E., Dimitrakopoulos, P., Sfikas, G., Nikou, C., Krikoni, O., Charchanti, A.: Sipakmed: a new dataset for feature and image based classification of normal and pathological cervical cells in pap smear images. In: 2018 25th IEEE International Conference on Image Processing (ICIP), pp. 3144–3148. IEEE (2018)

    Google Scholar 

  5. Rezende, M.T., et al.: Cric searchable image database as a public platform for conventional pap smear cytology data. Sci. Data 8(1), 1–8 (2021)

    Article  MathSciNet  Google Scholar 

  6. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014). https://arxiv.org/abs/1409.1556

  7. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2818–2826 (2016)

    Google Scholar 

  8. Touvron, H., Cord, M., Douze, M., Massa, F., Sablayrolles, A., Jégou, H.: Training data-efficient image transformers & distillation through attention. In: International Conference on Machine Learning, pp. 10347–10357. PMLR (2021)

    Google Scholar 

  9. Yuan, L., et al.: Tokens-to-token vit: training vision transformers from scratch on imagenet. arXiv preprint arXiv:2101.11986 (2021), https://arxiv.org/abs/2101.11986

  10. Rahaman, M.M., et al.: A survey for cervical cytopathology image analysis using deep learning. IEEE Access 8, 61687–61710 (2020)

    Article  Google Scholar 

  11. Xue, D., et al.: An application of transfer learning and ensemble learning techniques for cervical histopathology image classification. IEEE Access 8, 104603–104618 (2020)

    Article  Google Scholar 

  12. Khamparia, A., Gupta, D., de Albuquerque, V.H.C., Sangaiah, A.K., Jhaveri, R.H.: Internet of health things-driven deep learning system for detection and classification of cervical cells using transfer learning. J. Supercomput. 76(11), 8590–8608 (2020). https://doi.org/10.1007/s11227-020-03159-4

    Article  Google Scholar 

  13. Rahaman, M.M., et al.: Deepcervix: a deep learning-based framework for the classification of cervical cells using hybrid deep feature fusion techniques. Comput. Biol. Med. 136, 104649 (2021)

    Article  Google Scholar 

  14. Shi, J., Wang, R., Zheng, Y., Jiang, Z., Zhang, H., Yu, L.: Cervical cell classification with graph convolutional network. Comput. Methods Programs Biomed. 198, 105807 (2021)

    Article  Google Scholar 

  15. Liu, W., et al.: Is the aspect ratio of cells important in deep learning? A robust comparison of deep learning methods for multi-scale cytopathology cell image classification: From convolutional neural networks to visual transformers. Comput. Biol. Med. 105026 (2021)

    Google Scholar 

  16. Li, C., Zhang, J., Kulwa, F., Qi, S., Qi, Z.: A SARS-CoV-2 microscopic image dataset with ground truth images and visual features. In: Peng, Y., et al. (eds.) PRCV 2020. LNCS, vol. 12305, pp. 244–255. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-60633-6_20

    Chapter  Google Scholar 

  17. Rahaman, M.M., et al.: Identification of covid-19 samples from chest x-ray images using deep learning: a comparison of transfer learning approaches. J. Xray Sci. Technol. 28(5), 821–839 (2020)

    Google Scholar 

  18. Ismael, A.M., Şengür, A.: Deep learning approaches for covid-19 detection based on chest x-ray images. Expert Syst. Appl. 164, 114054 (2021)

    Article  Google Scholar 

  19. Li, C., et al.: A review for cervical histopathology image analysis using machine vision approaches. Artif. Intell. Rev. 53(7), 4821–4862 (2020). https://doi.org/10.1007/s10462-020-09808-7

    Article  Google Scholar 

  20. Li, C., et al.: A comprehensive review of computer-aided whole-slide image analysis: from datasets to feature extraction, segmentation, classification and detection approaches. Artif. Intell. Rev. 1–70 (2021). https://doi.org/10.1007/s10462-021-10121-0

  21. Chen, H., et al.: IL-MCAM: an interactive learning and multi-channel attention mechanism-based weakly supervised colorectal histopathology image classification approach. Comput. Biol. Med. 143, 105265 (2022)

    Article  Google Scholar 

  22. Hu, W., et al.: GasHisSDB: a new gastric histopathology image dataset for computer aided diagnosis of gastric cancer. Comput. Biol. Med. 105207 (2022)

    Google Scholar 

  23. Hameed, Z., Zahia, S., Garcia-Zapirain, B., Javier Aguirre, J., María Vanegas, A.: Breast cancer histopathology image classification using an ensemble of deep learning models. Sensors 20(16), 4373 (2020)

    Article  Google Scholar 

  24. Li, C., Wang, K., Xu, N.: A survey for the applications of content-based microscopic image analysis in microorganism classification domains. Artif. Intell. Rev. 51(4), 577–646 (2017). https://doi.org/10.1007/s10462-017-9572-4

    Article  Google Scholar 

  25. Zhang, J., et al.: A comprehensive review of image analysis methods for microorganism counting: from classical image processing to deep learning approaches. Artif. Intell. Rev. 1–70 (2021)

    Google Scholar 

  26. Kosov, S., Shirahama, K., Li, C., Grzegorzek, M.: Environmental microorganism classification using conditional random fields and deep convolutional neural networks. Pattern Recogn. 77, 248–261 (2018)

    Article  Google Scholar 

  27. Zhang, J., et al.: LCU-Net: a novel low-cost u-net for environmental microorganism image segmentation. Pattern Recogn. 115, 107885 (2021)

    Article  Google Scholar 

  28. Diniz, N., et al.: A deep learning ensemble method to assist cytopathologists in pap test image classification. J. Imaging 7(7), 111 (2021)

    Article  Google Scholar 

  29. Srinivas, A., Lin, T.Y., Parmar, N., Shlens, J., Abbeel, P., Vaswani, A.: Bottleneck transformers for visual recognition. arXiv preprint arXiv:2101.11605 (2021). https://arxiv.org/abs/2101.11605

  30. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: Mobilenetv2: Inverted residuals and linear bottlenecks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4510–4520 (2018)

    Google Scholar 

  31. Ma, N., Zhang, X., Zheng, H.-T., Sun, J.: ShuffleNet V2: practical guidelines for efficient CNN architecture design. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) Computer Vision – ECCV 2018. LNCS, vol. 11218, pp. 122–138. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01264-9_8

    Chapter  Google Scholar 

  32. Szegedy, C., Ioffe, S., Vanhoucke, V., Alemi, A.A.: Inception-v4, inception-resnet and the impact of residual connections on learning. In: Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, pp. 4278–4284 (2017). https://dl.acm.org/doi/10.5555/3298023.3298188

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chen Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, W., Li, C., Sun, H., Hu, W., Chen, H., Grzegorzek, M. (2022). DVT: Application of Deep Visual Transformer in Cervical Cell Image Classification. In: Pietka, E., Badura, P., Kawa, J., Wieclawek, W. (eds) Information Technology in Biomedicine. ITIB 2022. Advances in Intelligent Systems and Computing, vol 1429. Springer, Cham. https://doi.org/10.1007/978-3-031-09135-3_24

Download citation

Publish with us

Policies and ethics