Skip to main content

Comparative Analysis of Selected Methods of Identifying the Newborn’s Skeletal Model

  • Conference paper
  • First Online:
Information Technology in Biomedicine (ITIB 2022)

Abstract

Determining and tracking the location of specific points of real objects in space is not an easy task. Nowadays, this task is performed by artificial deep neural networks. Various methods and techniques have been competing with each other in recent years. Most of them do it effectively and with a satisfactory result. The success of such solutions is associated with long-term learning and a large amount of training material. The following article should answer the question whether and how the selected tool affects the results obtained. Several approaches to solving the problem using different technologies are presented. The material was verified for a selected group of photos of children in the first weeks of life.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cao, Z., et al.: OpenPose: Realtime Multi-Person 2D Pose Estimation Using Part Affinity Fields. IEEE Trans. Pattern Anal. Mach. Intell. 43, 1 (2021)

    Article  Google Scholar 

  2. Ionescu, C., Fuxin Li, C.S.: Human3.6M Dataset. http://vision.imar.ro/human3.6m/description.php. Accessed 03 Sep 2021

  3. Ceseracciu, E., et al.: Comparison of markerless and marker-based motion capture technologies through simultaneous data collection during gait: Proof of concept. PLoS One. 9(3), 1–7 (2014)

    Article  Google Scholar 

  4. Charles, J., et al.: Personalizing human video pose estimation. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 3063–3072 (2016)

    Google Scholar 

  5. Doroniewicz, I., et al.: Writhing movement detection in newborns on the second and third day of life using pose-based feature machine learning classification. Sensors (Switzerland). 20(21), 1–15 (2020)

    Article  Google Scholar 

  6. Doroniewicz, I., et al.: Temporal and spatial variability of the fidgety movement descriptors and their relation to head position in automized general movement assessment. Acta Bioeng. Biomech. 23(3), 1–21 (2021)

    Article  Google Scholar 

  7. Groos, D., et al.: Towards human performance on automatic motion tracking of infant spontaneous movements. Comput. Med. Imaging Graph. 95, 1–14 (2021)

    Google Scholar 

  8. Groos, D., Ramampiaro, H., Ihlen, E.A.F.: EfficientPose: scalable single-person pose estimation. Appl. Intell. 51(4), 2518–2533 (2020). https://doi.org/10.1007/s10489-020-01918-7

    Article  Google Scholar 

  9. Hanbyul (Han), J., Simon, T., Donglai Xiang, Y.R.Y.A.S.: CMU Panoptic Dataset. http://domedb.perception.cs.cmu.edu/. Accessed 03 Sep 2021

  10. Hesse, N., et al.: Body pose estimation in depth images for infant motion analysis. In: Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS. (2017). https://doi.org/10.1109/EMBC.2017.8037221

  11. Hesse, N., Bodensteiner, C., Arens, M., Hofmann, U.G., Weinberger, R., Sebastian Schroeder, A.: Computer vision for medical infant motion analysis: state of the art and RGB-D data set. In: Leal-Taixé, L., Roth, S. (eds.) ECCV 2018. LNCS, vol. 11134, pp. 32–49. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11024-6_3

    Chapter  Google Scholar 

  12. Hesse, N., et al.: Estimating body pose of infants in depth images using random ferns. In: Proceedings of the IEEE International Conference on Computer Vision (2015). https://doi.org/10.1109/ICCVW.2015.63

  13. Johnson, S., Everingham, M.: Clustered pose and nonlinear appearance models for human pose estimation. In: British Machine Vision Conference BMVC 2010 - Proceedings, pp. 1–11 (2010)

    Google Scholar 

  14. Lin, T., Maire, M.: COCO Dataset | Papers With Code. https://paperswithcode.com/dataset/coco. Accessed 03 Sep 2021

  15. Migliorelli, L., et al.: The babyPose dataset. Data Br. 33 (2020). https://doi.org/10.1016/j.dib.2020.106329

  16. Nakano, N., et al.: Evaluation of 3D markerless motion capture accuracy using open-pose with multiple video cameras. Front. Sport. Act. Living. 2(50), 1–9 (2020)

    Google Scholar 

  17. Passmore, E., et al.: Deep learning for automated pose estimation of infants at home from smart phone videos. Gait Posture. 81 (2020). https://doi.org/10.1016/j.gaitpost.2020.08.026

  18. Sapp, B., Taskar, B.: MODEC: Multimodal decomposable models for human pose estimation. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 3674–3681, Portland, OR, USA (2013)

    Google Scholar 

  19. Sun, K., et al.: Deep high-resolution representation learning for human pose estimation. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 5686–5696 (2019)

    Google Scholar 

  20. Huang, X., Fu, N., Shuangjun Liu, S.O.: Invariant representation learning for infant pose estimation with small data. In: 16th IEEE International Conference on Automatic Face and Gesture Recognition, p. 18, Jodhpur, India (2021). https://doi.org/10.1109/FG52635.2021.9666956

  21. Home - WRNCH. https://wrnch.ai/, Accessed 03 Sep 2021, CMU Panoptic Dataset. http://domedb.perception.cs.cmu.edu/. Accessed 03 Sep 2021

  22. COCO Dataset | Papers With Code. https://paperswithcode.com/dataset/coco. Accessed 03 Sep 2021

  23. Human3.6M Dataset. http://vision.imar.ro/human3.6m/description.php. Accessed 03 Sep 2021

  24. Leeds Sports Pose Dataset. http://sam.johnson.io/research/lsp.html. Accessed 03 Sep 2021

  25. MPII Human Pose Database. http://human-pose.mpi-inf.mpg.de/. Accessed 03 Sep 2021

  26. Pose Estimation. https://paperswithcode.com/task/pose-estimation. Accessed 03 Sep 2021

  27. Pose Estimation on MPII Human Pose.https://paperswithcode.com/sota/pose-estimation-on-mpii-human-pose. Accessed 03 Sep 2021

  28. VGG Pose Datasets. https://www.robots.ox.ac.uk/~vgg/data/pose/. Accessed 03 Sep 2021

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam Mrozek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mrozek, A. et al. (2022). Comparative Analysis of Selected Methods of Identifying the Newborn’s Skeletal Model. In: Pietka, E., Badura, P., Kawa, J., Wieclawek, W. (eds) Information Technology in Biomedicine. ITIB 2022. Advances in Intelligent Systems and Computing, vol 1429. Springer, Cham. https://doi.org/10.1007/978-3-031-09135-3_28

Download citation

Publish with us

Policies and ethics