Skip to main content

A Revealed Imperfection in Concept Drift Correction in Metabolomics Modeling

  • Conference paper
  • First Online:
Information Technology in Biomedicine (ITIB 2022)

Abstract

Prediction models that rely on time series data are often affected by diminished predictive accuracy. This occurs from the causal relationships of the data that shift over time. Thus, the changing weights that are used to create prediction models lose their informational value. One way to correct this change is by using concept drift information. That is exactly what prediction models in biomedical applications need. Currently, metabolomics is at the forefront in modeling analysis for phenotype prediction, making it one of the most interesting candidates for biomedical prediction diagnosis. However, metabolomics datasets include dynamic information that can harm prediction modeling. The study presents concept drift correction methods to account for dynamic changes that occur in metabolomics data for better prediction outcomes of phenotypes in a biomedical setting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Birks, J., et al.: Evaluation of a prediction model for colorectal cancer: retrospective analysis of 2.5 million patient records. Cancer Med. 6(10), 2453–2460 (2017)

    Google Scholar 

  2. Jae-woo, L., et al.: The development and implementation of stroke risk prediction model in national health insurance Service’s personal health record. Comput. Methods Program. Biomed. 153, 253–257 (2018)

    Article  Google Scholar 

  3. Tantawy, A.A., Naguib, D.M.: Arginine, histidine and tryptophan: a new hope for cancer immunotherapy. PharmaNutrition 8, 100149 (2019)

    Article  Google Scholar 

  4. Changsong, G., et al.: Isoleucine plays an important role for maintaining immune function. Curr. Protein Pept. Sci. 20(7), 644–651 (2019)

    Article  Google Scholar 

  5. Iyer, A., Fairlie, D.P., Brown, L.: Lysine acetylation in obesity, diabetes and metabolic disease. Immunol. Cell Biol. 90(1), 39–46 (2012)

    Article  Google Scholar 

  6. Andras, P.: Metabolic control of immune system activation in rheumatic diseases. Arthritis Rheumatol. 69(12), 2259–2270 (2017)

    Article  Google Scholar 

  7. Webb, G.I., Hyde, R., Cao, H., Nguyen, H.L., Petitjean, F.: Characterizing concept drift. Data Min. Knowl. Disc. 30(4), 964–994 (2016). https://doi.org/10.1007/s10618-015-0448-4

    Article  MathSciNet  MATH  Google Scholar 

  8. Gama, J., Medas, P., Castillo, G., Rodrigues, P.: Learning with drift detection. In: Bazzan, A.L.C., Labidi, S. (eds.) SBIA 2004. LNCS (LNAI), vol. 3171, pp. 286–295. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28645-5_29

    Chapter  Google Scholar 

  9. Grulich, P.M., et al. Scalable detection of concept drifts on data streams with parallel adaptive windowing. In: EDBT, pp. 477–480 (2018)

    Google Scholar 

  10. Imen, K., et al.: Self-adaptive windowing approach for handling complex concept drift. Cogn. Comput. 7(6), 772–790 (2015)

    Article  Google Scholar 

  11. Huang, D.T.J., et al. Detecting volatility shift in data streams. In: 2014 IEEE International Conference on Data Mining, pp. 863–868. IEEE (2014)

    Google Scholar 

  12. Sun, J., Li, H., Adeli, H.: Concept drift-oriented adaptive and dynamic support vector machine ensemble with time window in corporate financial risk prediction. IEEE Trans. Syst. Man Cybern. Syst. 43(4), 801–813 (2013)

    Article  Google Scholar 

  13. Aggarwal, C.C.: On biased reservoir sampling in the presence of stream evolution. In: Proceedings of the 32nd International Conference on Very Large Data Bases, pp. 607–618 (2006)

    Google Scholar 

  14. Guajardo, J.A., Weber, R., Miranda, J.: A model updating strategy for predicting time series with seasonal patterns. Appl. Soft Comput. 10(1), 276–283 (2010)

    Article  Google Scholar 

  15. Kolter, J.Z., Maloof, M.A.: Dynamic weighted majority: an ensemble method for drifting concepts. J. Mach. Learn. Res. 8, 2755–2790 (2007)

    MATH  Google Scholar 

  16. Sun, Y., et al.: Concept drift adaptation by exploiting historical knowledge. IEEE Trans. Neural Netw. Learn. Syst. 29(10), 4822–4832 (2018)

    Article  Google Scholar 

  17. Shenglan, L., et al.: Concept drift detection for data stream learning based on angle optimized global embedding and principal component analysis in sensor networks. Comput. Electr. Eng. 58, 327–336 (2017)

    Article  Google Scholar 

  18. Pless, R., Souvenir, R.: A survey of manifold learning for images. IPSJ Trans. Comput. Vis. Appl. 1, 83–94 (2009)

    Article  Google Scholar 

  19. Wei, L., et al.: Guidelines for developing and reporting machine learning predictive models in biomedical research: a multidisciplinary view. J. Med. Internet Res. 18(12), e323 (2016)

    Article  Google Scholar 

  20. Žliobaité, I.: Learning under concept drift: an overview. arXiv preprint arXiv:1010.4784 (2010)

  21. Wang, T.J., et al.: Metabolite profiles and the risk of developing diabetes. Nat. Med. 17(4), 448–453 (2011)

    Article  Google Scholar 

  22. Clement, I.P., et al.: Chemical form of selenium, critical metabolites, and cancer prevention. Cancer Res. 51(2), 595–600 (1991)

    Google Scholar 

  23. Montemayor, D., Sharma, K.: mGWAS: next generation genetic prediction in kidney disease. Nat. Rev. Nephrol. 16(5), 255–256 (2020)

    Article  Google Scholar 

  24. Moats, R.A., et al.: Abnormal cerebral metabolite concentrations in patients with probable Alzheimer disease. Magn. Reson. Med. 32(1), 110–115 (1994)

    Article  Google Scholar 

  25. Schwarzerova, J., Bajger, A., Pierdou, I., Popelinsky, L., Sedlar, K., Weckwerth, W.: An innovative perspective on metabolomics data analysis in biomedical research using concept drift detection. In: Proceedings 2021 IEEE International Conference on Bioinformatics and Biomedicine (BIBM2021) (2021). (in press)

    Google Scholar 

  26. Xiaojing, C., et al.: Integration of metabolomics, genomics, and immune phenotypes reveals the causal roles of metabolites in disease. Genome Biol. 22(1), 1–22 (2021)

    Article  Google Scholar 

  27. Jacob, M., et al.: Scikit-multiflow: a multi-output streaming framework. J. Mach. Learn. Res. 19(1), 2914–2915 (2018)

    Google Scholar 

  28. Ekaba, B.: Logistic regression. In: Building Machine Learning and Deep Learning Models on Google Cloud Platform, Apress, Brekeley, CA, pp. 243–250 (2019)

    Google Scholar 

  29. Oza, N.C., Russell, S.J.: Online bagging and boosting. In: International Workshop on Artificial Intelligence and Statistics. PMLR, pp. 229–236 (2001)

    Google Scholar 

  30. Sanjeev, K., et al.: Design of adaptive ensemble classifier for online sentiment analysis and opinion mining. PeerJ. Comput. Sci. 7, e660 (2021)

    Article  Google Scholar 

  31. Manuel, B.G., et al.: Early drift detection method. In: Fourth International Workshop on Knowledge Discovery from Data Streams, pp. 77–86 (2006)

    Google Scholar 

  32. de Barros, R.S.M., de Carvalho Santos, S.G.T.: An overview and comprehensive comparison of ensembles for concept drift. Inf. Fusion 52, 213–244 (2019)

    Google Scholar 

  33. Bei, D., et al.: A prospective study of serum metabolomic and lipidomic changes in myopic children and adolescents. Exp. Eye Res. 199, 108182 (2020)

    Article  Google Scholar 

Download references

Acknowledgement

This work has been supported by grant FEKT-K-21-6878 realised within the project Quality Internal Grants of BUT (KInG BUT), Reg. No. CZ.02.2.69/0.0 /0.0/19_073/0016948, which is financed from the OP RDE.

We would like to thank Adam Hospodka for their support of our study, by building on the project team’s results in Machine Learning and Data Mining (PV056) course at Masaryk University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jana Schwarzerova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Schwarzerova, J. et al. (2022). A Revealed Imperfection in Concept Drift Correction in Metabolomics Modeling. In: Pietka, E., Badura, P., Kawa, J., Wieclawek, W. (eds) Information Technology in Biomedicine. ITIB 2022. Advances in Intelligent Systems and Computing, vol 1429. Springer, Cham. https://doi.org/10.1007/978-3-031-09135-3_42

Download citation

Publish with us

Policies and ethics