Skip to main content

Gene Expression Analysis of the Bladder Cancer Patients Managed by Radical Cystectomy

  • Conference paper
  • First Online:
Information Technology in Biomedicine (ITIB 2022)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1429))

Included in the following conference series:

  • 327 Accesses

Abstract

The aim of this research was to find the differentially expressed genes in the groups of patients with different stages of bladder cancer. Proper analysis could help to find biomarkers responsible for the occurrence of the most invasive forms of bladder cancer. The microarray data (series GSE31684) was used and the obtained genes were characterized and described. The data from 93 bladder cancer patients managed by radical cystectomy was used. The research also examined the impact of various parameters on survival after surgery. The results of the analysis showed that some genes can allow to diagnose various types of cancer grade and stage. The research also presented how smoking, lymph node metastases, cancer stage and grade can affect survival.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Atlas of Genetics and Cytogenetics in Oncology and Haematology. http://atlasgeneticsoncology.org/

  2. Ackermann, A., Brieger, A.: The role of nonerythroid spectrin alpha II in cancer. J. Oncol. 2019, 1–14 (2019)

    Article  Google Scholar 

  3. Benjamini, Y., Yekutieli, D.: The control of the false discovery rate in multiple testing under dependency. Ann. Stat. 29(4), 1165–1188 (2001)

    Article  MathSciNet  Google Scholar 

  4. Bostrom, P.J., et al.: Staging and staging errors in bladder cancer. Eur. Urol. Suppl. 9, 2–9 (2010)

    Article  Google Scholar 

  5. Cha, T.L.: Emodin modulates epigenetic modifications and suppresses bladder carcinoma cell growth. Mol. Carcinog. 54(3), 167–177 (2015)

    Article  Google Scholar 

  6. Chen, S., Zhang, N., Shao, J., Wang, T., Wang, X.: A novel gene signature combination improves the prediction of overall survival in urinary bladder cancer. J. Cancer 10, 5744–5753 (2019)

    Article  Google Scholar 

  7. Chłosta, P.: Radykalne wycięcie pęcherza moczowego metodą laparoskopową - technika, wyniki i ograniczenia. Przegląd urologiczny 2(66), 24–28 (2011). (in Polish)

    Google Scholar 

  8. Di, Y., Chen, D., Yu, W., Yan, L.: Bladder cancer stage-associated hub genes revealed by WGCNA co-expression network analysis. Hereditas 156(1), 1–11 (2019)

    Article  Google Scholar 

  9. Długosz, A., Królik, E.: Profilaktyka w raku pęcherza moczowego. Biuletyn Polskiego Towarzystwa Onkologicznego Nowotwory 2(4), 321–327 (2017). (in Polish)

    Google Scholar 

  10. Do, M.H., et al.: Targeting CD46 enhances anti-tumoral activity of adenovirus type 5 for bladder cancer. Int. J. Mol. Sci. 19, 2694 (2018)

    Article  Google Scholar 

  11. Drewa, T.: Biologia raka naciekającego błonę mięśniową pęcherza moczowego. Przegląd urologiczny 2(66), 10–12 (2011). (in Polish)

    Google Scholar 

  12. Fondrevelle, M.E., et al.: The expression of twist has an impact on survival in human bladder cancer and is influenced by the smoking status. Urol. Oncol. Semin. Original Invest. 27(3), 268–276 (2009)

    Article  Google Scholar 

  13. Foutadakis, S., Avgeris, M., Tokas, T., Stravodimos, K., Scorilas, A.: Increased BCL2L12 expression predicts the short-term relapse of patients with TaT1 bladder cancer following transurethral resection of bladder tumors. Urol. Oncol. Semin. Original Invest. 32(1), 39.e29-39.e36 (2014)

    Article  Google Scholar 

  14. Fröhlich, C., Albrechtsen, R., Dyrskjøt, L., Rudkjær, L., Ørntoft, T.F., Wewer, U.M.: Molecular profiling of ADAM12 in human bladder cancer. Clin. Cancer Res. 12(24), 7359–7368 (2006)

    Article  Google Scholar 

  15. Gene Expression Omnibus: Series GSE31684. https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE31684

  16. Irizarry, R.A., Hobbs, B., Collin, F., Beazer-Barclay, Y.D., Antonellis, K.J., Scherf, U., Speed, T.P.: Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 4(2), 249–264 (2003)

    Article  Google Scholar 

  17. Izdebska, M., Grzanka, A., Ostrowski, M.: Rak pęcherza moczowego - molekularne podłoże genezy i leczenia. Kosmos 54(2–3), 213–220 (2005). (in Polish)

    Google Scholar 

  18. Kaplan, E.L., Meier, P.: Nonparametric estimation from incomplete observations. J. Am. Stat. Assoc. 53(282), 457–481 (1958)

    Article  MathSciNet  Google Scholar 

  19. Liao, Z., Wang, X., Zeng, Y., Zou, Q.: Identification of dep domain-containing proteins by a machine learning method and experimental analysis of their expression in human HCC tissues. Sci. Rep. 6(1), 1–11 (2016)

    Article  Google Scholar 

  20. Liu, X., et al.: Overexpression of ABCC3 promotes cell proliferation, drug resistance, and aerobic glycolysis and is associated with poor prognosis in urinary bladder cancer patients. Tumor Biol. 37(6), 8367–8374 (2016). https://doi.org/10.1007/s13277-015-4703-5

    Article  Google Scholar 

  21. Mares, J., Szakacsova, M., Soukup, V., Duskova, J., Horinek, A., Babjuk, M.: Prediction of recurrence in low and intermediate risk non-muscle invasive bladder cancer by real-time quantitative PCR analysis: cDNA microarray results. Neoplasma 60(3), 295–301 (2013)

    Article  Google Scholar 

  22. Mattie, M., et al.: The discovery and preclinical development of ASG-5ME, an antibody–drug conjugate targeting SLC44A4-positive epithelial tumors including pancreatic and prostate cancer. Mol. Cancer Ther. 15(11), 2679–2687 (2016)

    Article  Google Scholar 

  23. Mitra, A.P., Cote, R.J.: Molecular pathogenesis and diagnostics of bladder cancer. Annu. Rev. Pathol. 4(1), 251–285 (2009)

    Article  Google Scholar 

  24. Neuzillet, Y., et al.: IGF1R activation and the in vitro antiproliferative efficacy of IGF1R inhibitor are inversely correlated with IGFBP5 expression in bladder cancer. BMC Cancer 17(1), 1–12 (2017)

    Article  Google Scholar 

  25. Oparina, N., et al.: Increase in NETO2 gene expression is a potential molecular genetic marker in renal and lung cancers. Russ. J. Genet. 48, 506–512 (2012). https://doi.org/10.1134/S1022795412050171

    Article  Google Scholar 

  26. Poletajew, S.: Ocena stopnia zaawansowania raka pęcherza moczowego. Przegląd urologiczny 3(73), 22–26 (2012). (in Polish)

    Google Scholar 

  27. Purcell, J.W., et al.: LRRC15 is a novel mesenchymal protein and stromal target for antibody–drug conjugates. Cancer Res. 78(14), 4059–4072 (2018)

    Article  Google Scholar 

  28. Riester, M., et al.: Combination of a novel gene expression signature with a clinical nomogram improves the prediction of survival in high-risk bladder cancer. Clin. Cancer Res. 18(5), 1323–1333 (2012)

    Article  Google Scholar 

  29. Shin, K., et al.: Hedgehog signaling restrains bladder cancer progression by eliciting stromal production of urothelial differentiation factors. Cancer Cell 26(4), 521–533 (2014)

    Article  Google Scholar 

  30. Skrzypczyk, M., Grothuss, G., Dobruch, J., Chłosta, P.L., Borówka, A.: Rak pęcherza moczowego w Polsce. Bladder cancer in poland. Postępy Nauk Medycznych/Progress in Medicine 25(4), 311–319 (2012). (in Polish)

    Google Scholar 

  31. Song, Y.H., et al.: TWIST1 and Y-box-binding protein-1 are potential prognostic factors in bladder cancer. Urol. Oncol. Semin. Original Invest. 32(1), 31.e1-31.e7 (2014)

    Article  Google Scholar 

  32. Szymańska, B., Długosz, A.: The role of the BLCA-4 nuclear matrix protein in bladder cancer. Adv. Hyg. Exp. Med./Postępy Higieny i Medycyny Doświadczalnej 71, 681–689 (2017)

    Google Scholar 

  33. Wilson, C.L., Miller, C.J.: Simpleaffy: a BioConductor package for affymetrix quality control and data analysis. Bioinformatics 21(18), 3683–3685 (2005)

    Article  Google Scholar 

  34. Xiong, J.: Essential Bioinformatics. Cambridge University Press, New York (2006)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Tamulewicz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tamulewicz, A., Mazur, A. (2022). Gene Expression Analysis of the Bladder Cancer Patients Managed by Radical Cystectomy. In: Pietka, E., Badura, P., Kawa, J., Wieclawek, W. (eds) Information Technology in Biomedicine. ITIB 2022. Advances in Intelligent Systems and Computing, vol 1429. Springer, Cham. https://doi.org/10.1007/978-3-031-09135-3_44

Download citation

Publish with us

Policies and ethics