Skip to main content

Privacy-Preserving Authenticated Key Exchange for Constrained Devices

  • Conference paper
  • First Online:
Applied Cryptography and Network Security (ACNS 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13269))

Included in the following conference series:

  • 1448 Accesses

Abstract

In this paper we investigate the field of privacy-preserving authenticated key exchange protocols (PPAKE). First we make a cryptographic analysis of a previous PPAKE protocol. We show that most of its security properties, including privacy, are broken, despite the security proofs that are provided. Then we describe a strong security model which captures the security properties of a PPAKE: entity authentication, key indistinguishability, forward secrecy, and privacy. Finally, we present a PPAKE protocol in the symmetric-key setting which is suitable for constrained devices. We formally prove the security of this protocol in our model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In [5], Avoine et al. describe the message flow of a cryptographic protocol. Consequently, they indicate only the parameters that are necessary on a cryptographic point of view.

  2. 2.

    This is a technical feature of the SAKE and SAKE-AM protocols, which our PPSAKE protocol is based on. In this regard, we refer the reader to [5, Sect. 6].

References

  1. Aghili, S.F., Jolfaei, A.A., Abidin, A.: SAKE\(^+\): strengthened symmetric-key authenticated key exchange with perfect forward secrecy for IoT. Cryptology ePrint Archive, Report 2020/778, 20200714:112142 (2020)

    Google Scholar 

  2. ANSSI. Should Quantum Key Distribution be Used for Secure Communications? (2020)

    Google Scholar 

  3. Arfaoui, G., Bultel, X., Fouque, P.A., Nedelcu, A., Onete, C.: The privacy of the TLS 1.3 protocol. PoPETs 2019(4), 190–210 (2019)

    Google Scholar 

  4. Ashur, T., et al.: A privacy-preserving device tracking system using a low-power wide-area network. In: Capkun, S., et al. (eds.) CANS 2017. LNCS, vol. 11261, pp. 347–369. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-02641-7_16

  5. Avoine, G., Canard, S., Ferreira, L.: Symmetric-key authenticated key exchange (SAKE) with perfect forward secrecy. In: Jarecki, S. (ed.) CT-RSA 2020. LNCS, vol. 12006, pp. 199–224. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-40186-3_10

    Chapter  Google Scholar 

  6. Avoine, G., Coisel, I., Martin, T.: Time measurement threatens privacy-friendly RFID authentication protocols. In: Yalcin, O., Berna, S. (ed.) RFIDSec 2010. LNCS, vol. 6370, pp. 138–157. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16822-2_13

  7. Avoine, G., Coisel, I., Martin, T.: Untraceability model for RFID. IEEE Trans. Mob. Comput. 13(10), 9 (2014)

    Article  Google Scholar 

  8. Bellare, M., Desai, A., Jokipii, E., Rogaway, P.: A concrete security treatment of symmetric encryption. In: 38th FOCS, pp. 394–403. IEEE Computer Society Press (1997)

    Google Scholar 

  9. Bellare, M., Namprempre, C.: Authenticated encryption: relations among notions and analysis of the generic composition paradigm. J. Cryptol. 21(4), 469–491 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bellare, M., Rogaway, P.: Entity authentication and key distribution. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 232–249. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48329-2_21

    Chapter  Google Scholar 

  11. Bellare, M., Rogaway, P.: The security of triple encryption and a framework for code-based game-playing proofs. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 409–426. Springer, Heidelberg (2006). https://doi.org/10.1007/11761679_25

  12. Blake-Wilson, S., Johnson, D., Menezes, A.: Key agreement protocols and their security analysis. In: Darnell, M. (ed.) Cryptography and Coding 1997. LNCS, vol. 1355, pp. 30–45. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0024447

    Chapter  MATH  Google Scholar 

  13. Blanchet, B., Smyth, B., Cheval, V., Sylvestre, M.: ProVerif 2.01: automatic cryptographic protocol verifier, user manual and tutorial (2020)

    Google Scholar 

  14. Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors. Commun. ACM 13(7), 422–426 (1970)

    Article  MATH  Google Scholar 

  15. Brzuska, C., Jacobsen, H., Stebila, D.: Safely exporting keys from secure channels. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9665, pp. 670–698. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49890-3_26

    Chapter  Google Scholar 

  16. Canard, S., Coisel, I.: Data synchronization in privacy-preserving RFID authentication schemes. In: Radio Frequency Identification: Security and Privacy Issues - 4th International Workshop, RFIDSec 2008 (2008)

    Google Scholar 

  17. Canard, S., Coisel, I., Etrog, J., Girault, M.: Privacy-preserving RFID systems: model and constructions. Cryptology ePrint Archive, Report 2010/405 (2010)

    Google Scholar 

  18. Dimitriou, T.: Key evolving RFID systems. Ad Hoc Netw. 37(P2), 195–208 (2016)

    Article  MathSciNet  Google Scholar 

  19. Fan, B., Andersen, D.G., Kaminsky, M., Mitzenmacher, M.: Cuckoo filter: practically better than bloom. In: Seneviratne, A., Diot, C., Kurose, J., Chaintreau, A., Rizzo, L. (eds.) Proceedings of the 10th ACM International on Conference on emerging Networking Experiments and Technologies, CoNEXT 2014, pp. 75–88. ACM (2014)

    Google Scholar 

  20. Ferreira, L.: Privacy-preserving authenticated key exchange for constrained devices. Cryptology ePrint Archive, Report 2021/1647 (2021)

    Google Scholar 

  21. Fischlin, M., Günther, F.: Replay attacks on zero round-trip time: the case of the TLS 1.3 handshake candidates. In: 2017 IEEE European Symposium on Security and Privacy (EuroS&P), pp. 60–75. IEEE (2017)

    Google Scholar 

  22. Fouque, P.A., Onete, C., Richard, B.: Achieving better privacy for the 3GPP AKA protocol. PoPETs 2016(4), 255–275 (2016)

    Article  Google Scholar 

  23. Hedbom, H.: A survey on transparency tools for enhancing privacy. In: Matyáš, V., Fischer-Hübner, S., Cvrček, D., Švenda, P. (eds.) Privacy and Identity 2008. IAICT, vol. 298, pp. 67–82. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03315-5_5

  24. Hermans, J., Pashalidis, A., Vercauteren, F., Preneel, B.: A new RFID privacy model. In: Atluri, V., Diaz, C. (eds.) ESORICS 2011. LNCS, vol. 6879, pp. 568–587. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23822-2_31

    Chapter  Google Scholar 

  25. Huang, H.F., Yu, P.K., Liu, K.C.: A privacy and authentication protocol for mobile RFID system. In: International Symposium on Independent Computing - ISIC 2014 (2014)

    Google Scholar 

  26. Jager, T., Kohlar, F., Schäge, S., Schwenk, J.: On the security of TLS-DHE in the standard model. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 273–293. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5_17

    Chapter  MATH  Google Scholar 

  27. Juels, A.: RFID security and privacy: a research survey. IEEE J. Sel. A. Commun. 24(2), 381–394 (2006)

    Article  MathSciNet  Google Scholar 

  28. Juels, A., Weis, S.A.: Defining strong privacy for RFID. In: Fifth Annual IEEE International Conference on Pervasive Computing and Communications Workshops (PerComW’07), pp. 342–347 (2007)

    Google Scholar 

  29. Malina, L., Srivastava, G., Dzurenda, P., Hajny, J., Ricci, S.: A privacy-enhancing framework for Internet of Things services. In: Liu, J.K., Huang, X. (eds.) NSS 2019. LNCS, vol. 11928, pp. 77–97. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-36938-5_5

  30. Ouafi, K., Phan, R.C.-W.: Traceable privacy of recent provably-secure RFID protocols. In: Bellovin, S.M., Gennaro, R., Keromytis, A., Yung, M. (eds.) ACNS 2008. LNCS, vol. 5037, pp. 479–489. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-68914-0_29

    Chapter  Google Scholar 

  31. Ray, A.K., Bagwari, A.: Study of smart home communication protocol’s and security privacy aspects. In: 7th International Conference on Communication Systems and Network Technologies (CSNT), pp. 240–245 (2017)

    Google Scholar 

  32. Rescorla, E.: The transport layer security (TLS) protocol version 1.3 (2018)

    Google Scholar 

  33. Schäge, S., Schwenk, J., Lauer, S.: Privacy-preserving authenticated key exchange and the case of IKEv2. In: Kiayias, A., Kohlweiss, M., Wallden, P., Zikas, V. (eds.) PKC 2020. LNCS, vol. 12111, pp. 567–596. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45388-6_20

    Chapter  MATH  Google Scholar 

  34. Shoup, V.: Sequences of games: a tool for taming complexity in security proofs. Cryptology ePrint Archive, Report 2004/332 (2004)

    Google Scholar 

  35. Song, T., Li, R., Mei, B., Yu, J., Xing, X., Cheng, X.: A privacy preserving communication protocol for IoT applications in smart homes. IEEE Internet Things J. 4(6), 1844–1852 (2017)

    Article  Google Scholar 

  36. Vaudenay, S.: On privacy models for RFID. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 68–87. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-76900-2_5

    Chapter  Google Scholar 

  37. You, I., Kwon, S., Choudhary, G., Sharma, V., Seo, J.T.: An enhanced LoRaWAN security protocol for privacy preservation in IoT with a case study on a smart factory-enabled parking system. Sensors 18(6) (2018)

    Google Scholar 

  38. Ziegeldorf, J.H., Morchon, O.G., Wehrle, K.: Privacy in the Internet of Things: threats and challenges. Secur. Commun. Netw. 7(12), 2728–2742 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Loïc Ferreira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ferreira, L. (2022). Privacy-Preserving Authenticated Key Exchange for Constrained Devices. In: Ateniese, G., Venturi, D. (eds) Applied Cryptography and Network Security. ACNS 2022. Lecture Notes in Computer Science, vol 13269. Springer, Cham. https://doi.org/10.1007/978-3-031-09234-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-09234-3_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-09233-6

  • Online ISBN: 978-3-031-09234-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics