Skip to main content

Efficient Oblivious Evaluation Protocol and Conditional Disclosure of Secrets for DFA

  • Conference paper
  • First Online:
Applied Cryptography and Network Security (ACNS 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13269))

Included in the following conference series:

Abstract

In oblivious finite automata evaluation, one party holds a private automaton, and the other party holds a private string of characters. The objective is to let the parties know whether the string is accepted by the automaton or not, while keeping their inputs secret. The applications include DNA searching, pattern matching, and more. Most of the previous works are based on asymmetric cryptographic primitives, such as homomorphic encryption and oblivious transfer. These primitives are significantly slower than symmetric ones. Moreover, some protocols also require several rounds of interaction. As our main contribution, we propose an oblivious finite automata evaluation protocol via conditional disclosure of secrets (CDS), using one (potentially malicious) outsourcing server. This results in a constant-round protocol, and no heavy asymmetric-key primitives are needed. Our protocol is based on a building block called “an oblivious CDS scheme for deterministic finite automata” which we also propose in this paper. In addition, we propose a standard CDS scheme for deterministic finite automata as an independent interest.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This can be done by adding one special character marking the end of the string.

  2. 2.

    The method in [38] can be used to transform a pattern p to a finite automaton \(LEV_d(p)\) accepts the language \(L_d(p)\) contains all strings with Levenshtein distance at most d from p. It is shown in [39] that a finite automaton for a language \(\varSigma ^*L_d(p)\varSigma ^*\) will not have too many states.

  3. 3.

    In practice, PRF can be used to reduce the size of the common randomness.

References

  1. Agrawal, S., Maitra, M., Yamada, S.: Attribute based encryption (and more) for nondeterministic finite automata from LWE. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11693, pp. 765–797. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26951-7_26

    Chapter  Google Scholar 

  2. Agrawal, S., Maitra, M., Yamada, S.: Attribute based encryption for deterministic finite automata from \(\sf DLIN\). In: Hofheinz, D., Rosen, A. (eds.) TCC 2019. LNCS, vol. 11892, pp. 91–117. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-36033-7_4

    Chapter  Google Scholar 

  3. Aiello, B., Ishai, Y., Reingold, O.: Priced oblivious transfer: how to sell digital goods. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 119–135. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44987-6_8

    Chapter  Google Scholar 

  4. Applebaum, B., Beimel, A., Farràs, O., Nir, O., Peter, N.: Secret-sharing schemes for general and uniform access structures. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11478, pp. 441–471. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17659-4_15

    Chapter  Google Scholar 

  5. Applebaum, B., Beimel, A., Nir, O., Peter, N.: Better secret sharing via robust conditional disclosure of secrets. In: Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing, pp. 280–293 (2020)

    Google Scholar 

  6. Beimel, A., Peter, N.: Optimal linear multiparty conditional disclosure of secrets protocols. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018. LNCS, vol. 11274, pp. 332–362. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03332-3_13

    Chapter  Google Scholar 

  7. Bhadauria, R., Hazay, C.: Multi-clients verifiable computation via conditional disclosure of secrets. In: Galdi, C., Kolesnikov, V. (eds.) SCN 2020. LNCS, vol. 12238, pp. 150–171. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-57990-6_8

    Chapter  Google Scholar 

  8. Blanton, M., Aliasgari, M.: Secure outsourcing of DNA searching via finite automata. In: Foresti, S., Jajodia, S. (eds.) DBSec 2010. LNCS, vol. 6166, pp. 49–64. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13739-6_4

    Chapter  Google Scholar 

  9. Choi, S.G., Katz, J., Kumaresan, R., Cid, C.: Multi-client non-interactive verifiable computation. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 499–518. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36594-2_28

    Chapter  Google Scholar 

  10. Chou, T., Orlandi, C.: The simplest protocol for oblivious transfer. In: Lauter, K., Rodríguez-Henríquez, F. (eds.) LATINCRYPT 2015. LNCS, vol. 9230, pp. 40–58. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-22174-8_3

    Chapter  Google Scholar 

  11. Cramer, R., Damgård, I., Maurer, U.: General secure multi-party computation from any linear secret-sharing scheme. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 316–334. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45539-6_22

    Chapter  Google Scholar 

  12. Desai, A., Hevia, A., Yin, Y.L.: A practice-oriented treatment of pseudorandom number generators. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 368–383. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-46035-7_24

    Chapter  Google Scholar 

  13. Di Crescenzo, G., Coan, B., Kirsch, J.: Privacy-preserving deterministic automata evaluation with encrypted data blocks. In: Garcia-Alfaro, J., Navarro-Arribas, G., Hartenstein, H., Herrera-Joancomartí, J. (eds.) ESORICS/DPM/CBT -2017. LNCS, vol. 10436, pp. 275–294. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67816-0_16

    Chapter  Google Scholar 

  14. Frikken, K.B.: Practical private DNA string searching and matching through efficient oblivious automata evaluation. In: Gudes, E., Vaidya, J. (eds.) DBSec 2009. LNCS, vol. 5645, pp. 81–94. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03007-9_6

    Chapter  Google Scholar 

  15. Gay, R., Kerenidis, I., Wee, H.: Communication complexity of conditional disclosure of secrets and attribute-based encryption. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 485–502. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48000-7_24

    Chapter  Google Scholar 

  16. Genç, Z.A., Iovino, V., Rial, A.: The simplest protocol for oblivious transfer - revisited. Inf. Process. Lett. 161, 105975 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gennaro, R., Gentry, C., Parno, B.: Non-interactive verifiable computing: outsourcing computation to untrusted workers. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 465–482. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14623-7_25

    Chapter  Google Scholar 

  18. Gennaro, R., Hazay, C., Sorensen, J.S.: Text search protocols with simulation based security. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 332–350. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13013-7_20

    Chapter  Google Scholar 

  19. Gertner, Y., Ishai, Y., Kushilevitz, E., Malkin, T.: Protecting data privacy in private information retrieval schemes. In: Proceedings of the 30th Annual ACM Symposium on Theory of Computing, pp. 151–160 (1998)

    Google Scholar 

  20. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions. J. ACM (JACM) 33(4), 792–807 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  21. Goldwasser, S., Ben-Or, M., Wigderson, A.: Completeness theorems for non-cryptographic fault-tolerant distributed computing. In: Proceedings of the 20th STOC, pp. 1–10 (1988)

    Google Scholar 

  22. Gong, J., Waters, B., Wee, H.: ABE for DFA from k-Lin. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11693, pp. 732–764. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26951-7_25

    Chapter  Google Scholar 

  23. Gong, J., Wee, H.: Adaptively secure ABE for DFA from k-Lin and more. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12107, pp. 278–308. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45727-3_10

    Chapter  Google Scholar 

  24. Gordon, S.D., Katz, J., Liu, F.-H., Shi, E., Zhou, H.-S.: Multi-client verifiable computation with stronger security guarantees. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9015, pp. 144–168. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46497-7_6

    Chapter  Google Scholar 

  25. Impagliazzo, R., Rudich, S.: Limits on the provable consequences of one-way permutations. In: Proceedings of the 21st Annual ACM Symposium on Theory of Computing, pp. 44–61 (1989)

    Google Scholar 

  26. Ishai, Y., Kilian, J., Nissim, K., Petrank, E.: Extending oblivious transfers efficiently. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 145–161. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-4_9

    Chapter  Google Scholar 

  27. Laud, P., Willemson, J.: Universally composable privacy preserving finite automata execution with low online and offline complexity. IACR Cryptol. ePrint Arch. 2013, 678 (2013)

    Google Scholar 

  28. Lin, H., Luo, J.: Compact adaptively secure ABE from k-Lin: beyond \(\sf {NC}^1\) and towards \(\sf {NL}\). In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12107, pp. 247–277. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45727-3_9

    Chapter  Google Scholar 

  29. Lindell, Y., Pinkas, B.: A proof of security of Yao’s protocol for two-party computation. J. Cryptol. 22(2), 161–188 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  30. Liu, T., Vaikuntanathan, V.: Breaking the circuit-size barrier in secret sharing. In: Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing, pp. 699–708 (2018)

    Google Scholar 

  31. Liu, T., Vaikuntanathan, V., Wee, H.: Conditional disclosure of secrets via non-linear reconstruction. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10401, pp. 758–790. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63688-7_25

    Chapter  Google Scholar 

  32. Liu, T., Vaikuntanathan, V., Wee, H.: Towards breaking the exponential barrier for general secret sharing. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10820, pp. 567–596. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78381-9_21

    Chapter  Google Scholar 

  33. Mansy, D., Rindal, P.: Endemic oblivious transfer. In: Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security, pp. 309–326 (2019)

    Google Scholar 

  34. McQuoid, I., Rosulek, M., Roy, L.: Minimal symmetric PAKE and 1-out-of-n OT from programmable-once public functions. In: Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications Security, pp. 425–442 (2020)

    Google Scholar 

  35. Mohassel, P., Niksefat, S., Sadeghian, S., Sadeghiyan, B.: An efficient protocol for oblivious DFA evaluation and applications. In: Dunkelman, O. (ed.) CT-RSA 2012. LNCS, vol. 7178, pp. 398–415. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-27954-6_25

    Chapter  Google Scholar 

  36. Naor, M., Pinkas, B.: Computationally secure oblivious transfer. J. Cryptol. 18(1), 1–35 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  37. Sasakawa, H., Harada, H., duVerle, D., Arimura, H., Tsuda, K., Sakuma, J.: Oblivious evaluation of non-deterministic finite automata with application to privacy-preserving virus genome detection. In: Proceedings of the 13th Workshop on Privacy in the Electronic Society, pp. 21–30 (2014)

    Google Scholar 

  38. Schulz, K.U., Mihov, S.: Fast string correction with Levenshtein automata. Int. J. Doc. Anal. Recogn. 5(1), 67–85 (2002)

    Article  MATH  Google Scholar 

  39. Troncoso-Pastoriza, J.R., Katzenbeisser, S., Celik, M.: Privacy preserving error resilient DNA searching through oblivious automata. In: Proceedings of the 14th ACM Conference on Computer and Communications Security, pp. 519–528 (2007)

    Google Scholar 

  40. Wei, L., Reiter, M.K.: Third-party private DFA evaluation on encrypted files in the cloud. In: Foresti, S., Yung, M., Martinelli, F. (eds.) ESORICS 2012. LNCS, vol. 7459, pp. 523–540. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33167-1_30

    Chapter  Google Scholar 

  41. Yao, A.C.: Protocols for secure computations. In: 23rd Annual Symposium on Foundations of Computer Science, pp. 160–164. IEEE (1982)

    Google Scholar 

  42. Zhao, C., Zhao, S., Zhang, B., Jing, S., Chen, Z., Zhao, M.: Oblivious DFA evaluation on joint input and its applications. Inf. Sci. 528, 168–180 (2020)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

Nuttapong Attrapadung was partly supported by JSPS KAKENHI Kiban-A Grant Number 19H01109. Kanta Matsuura was partially supported by JSPS KAKENHI Grant Number 17KT0081.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kittiphop Phalakarn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Phalakarn, K., Attrapadung, N., Matsuura, K. (2022). Efficient Oblivious Evaluation Protocol and Conditional Disclosure of Secrets for DFA. In: Ateniese, G., Venturi, D. (eds) Applied Cryptography and Network Security. ACNS 2022. Lecture Notes in Computer Science, vol 13269. Springer, Cham. https://doi.org/10.1007/978-3-031-09234-3_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-09234-3_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-09233-6

  • Online ISBN: 978-3-031-09234-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics