Skip to main content

Analyzing the Provable Security Bounds of GIFT-COFB and Photon-Beetle

  • Conference paper
  • First Online:
Applied Cryptography and Network Security (ACNS 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13269))

Included in the following conference series:

  • 1638 Accesses

Abstract

We study the provable security claims of two NIST Lightweight Cryptography (LwC) finalists, GIFT-COFB and Photon-Beetle, and present several attacks whose complexities contradict their claimed bounds in their final round specification documents. For GIFT-COFB, we show an attack using \(q_e\) encryption queries and no decryption query to break privacy (IND-CPA). The success probability is \(O(q_e/2^{n/2})\) for n-bit block while the claimed bound contains \(O(q^2_e/2^{n})\). This positively solves an open question posed in [Khairallah, ePrint 2021/648 (also accepted at FSE 2022)]. For Photon-Beetle, we show an attack using \(q_e\) encryption queries (using a small number of input blocks) followed by a single decryption query and no primitive query to break authenticity (INT-CTXT). The success probability is \(O(q^2_e/2^{b})\) for a b-bit block permutation, and it is significantly larger than what the claimed bound tells, which is independent of the number of encryption queries. We also show a simple tag guessing attack that violates the INT-CTXT bound when the rate \(r=32\). Then, we analyze other (improved/modified) bounds of Photon-Beetle shown in the subsequent papers [Chakraborty et al., ToSC 2020(2) and Chakraborty et al., ePrint 2019/1475]. As a side result of our security analysis of Photon-Beetle, we point out that a simple and efficient forgery attack is possible in the related-key setting.

We emphasize that our results do not contradict the claimed “bit security” in the LwC specification documents for any of the schemes that we studied. That is, we do not negate the claims that GIFT-COFB is \((n/2 - \log n)\)-bit secure for \(n=128\), and Photon-Beetle is \((b/2 - \log b/2)\)-bit secure for \(b=256\) and \(r=128\), where r is a rate. We also note that the security against related-key attacks is not included in the security requirements of NIST LwC, and is not claimed by the designers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://csrc.nist.gov/projects/lightweight-cryptography.

  2. 2.

    Following the literature (e.g., [28]), we conventionally refer to it as privacy, but in practice, it may be more intuitive to call it confidentiality.

  3. 3.

    We do not know the difference between \(\sigma \) and \(\sigma _e\).

References

  1. Information technology-Security techniques-Lightweight cryptography-Part 5: Hash-functions. ISO/IEC 29192–5:2016 (2016)

    Google Scholar 

  2. Banik, S., et al.: GIFT-COFB. Cryptology ePrint Archive, Report 2020/738 (2020). https://ia.cr/2020/738

  3. Banik, S., et al.: GIFT-COFB v1.1. A submission to the NIST lightweight cryptography standardization process (2021). https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-round/updated-spec-doc/gift-cofb-spec-final.pdf

  4. Banik, S., Maitra, S., Sarkar, S., Meltem Sönmez, T.: A chosen IV related key attack on grain-128a. In: Boyd, C., Simpson, L. (eds.) ACISP 2013. LNCS, vol. 7959, pp. 13–26. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39059-3_2

    Chapter  Google Scholar 

  5. Banik, S., Pandey, S.K., Peyrin, T., Sasaki, Y., Sim, S.M., Todo, Y.: GIFT: a small present. In: Fischer, W., Homma, N. (eds.) CHES 2017. LNCS, vol. 10529, pp. 321–345. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66787-4_16

    Chapter  Google Scholar 

  6. Bao, Z., et al.: PHOTON-beetle authenticated encryption and hash family. A submission to the NIST lightweight cryptography standardization process (2021). https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-round/updated-spec-doc/photon-beetle-spec-final.pdf

  7. Bellare, M., Kohno, T.: A theoretical treatment of related-key attacks: RKA-PRPs, RKA-PRFs, and applications. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 491–506. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-39200-9_31

    Chapter  Google Scholar 

  8. Bellare, M., Namprempre, C.: Authenticated encryption: relations among notions and analysis of the generic composition paradigm. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 531–545. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44448-3_41

    Chapter  Google Scholar 

  9. Biham, E.: New types of cryptanalytic attacks using related keys. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 398–409. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48285-7_34

    Chapter  Google Scholar 

  10. Biryukov, C.B.A., et al.: SPARKLE (SCHWAEMM and ESCH). A submission to the NIST lightweight cryptography standardization process (2021). https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-round/updated-spec-doc/sparkle-spec-final.pdf

  11. Chakraborti, A., Datta, N., Nandi, M., Yasuda, K.: Beetle family of lightweight and secure authenticated encryption ciphers. IACR TCHES 2018(2), 218–241 (2018). https://doi.org/10.13154/tches.v2018.i2.218-241, https://tches.iacr.org/index.php/TCHES/article/view/881

  12. Chakraborti, A., Datta, N., Nandi, M., Yasuda, K.: Beetle family of lightweight and secure authenticated encryption ciphers. Cryptology ePrint Archive, Report 2018/805 (2018). https://eprint.iacr.org/2018/805

  13. Chakraborti, A., Iwata, T., Minematsu, K., Nandi, M.: Blockcipher-based authenticated encryption: how small can we go? In: Fischer, W., Homma, N. (eds.) CHES 2017. LNCS, vol. 10529, pp. 277–298. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66787-4_14

    Chapter  Google Scholar 

  14. Chakraborti, A., Iwata, T., Minematsu, K., Nandi, M.: Blockcipher-based authenticated encryption: how small can we go? J. Cryptol. 33(3), 703–741 (2019). https://doi.org/10.1007/s00145-019-09325-z

    Article  MathSciNet  MATH  Google Scholar 

  15. Chakraborty, B., Jha, A., Nandi, M.: On the security of sponge-type authenticated encryption modes. Cryptology ePrint Archive, Report 2019/1475 (2019). https://eprint.iacr.org/2019/1475

  16. Chakraborty, B., Jha, A., Nandi, M.: On the security of sponge-type authenticated encryption modes. IACR Trans. Symmetric Cryptol. 2020(2), 93–119 (2020). https://doi.org/10.13154/tosc.v2020.i2.93-119

  17. Dobraunig, C., Eichlseder, M., Mendel, F.: Related-key forgeries for Prøst-OTR. In: Leander, G. (ed.) FSE 2015. LNCS, vol. 9054, pp. 282–296. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48116-5_14

    Chapter  Google Scholar 

  18. Dobraunig, C., Mennink, B.: Key recovery attack on PHOTON-Beetle. OFFICIAL COMMENT: PHOTON-Beetle (2020). https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/official-comments/photon-beetle-round2-official-comment.pdf

  19. Guo, J., Peyrin, T., Poschmann, A.: The PHOTON family of lightweight hash functions. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 222–239. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22792-9_13

    Chapter  Google Scholar 

  20. Inoue, A., Minematsu, K.: GIFT-COFB is tightly birthday secure with encryption queries. Cryptology ePrint Archive, Report 2021/737 (2021). https://ia.cr/2021/737

  21. Khairallah, M.: Weak keys in the rekeying paradigm: Application to COMET and mixFeed. IACR Trans. Symmetric Cryptol. 2019(4), 272–289 (2019). https://doi.org/10.13154/tosc.v2019.i4.272-289

  22. Khairallah, M.: Observations on the tightness of the security bounds of GIFT-COFB and HyENA. Cryptology ePrint Archive, Report 2020/1463 (2020). https://eprint.iacr.org/2020/1463

  23. Khairallah, M.: Security of COFB against chosen ciphertext attacks. Cryptology ePrint Archive, Report 2021/648 (2021). https://eprint.iacr.org/2021/648, (also accepted at FSE 2022)

  24. Lee, Y., Jeong, K., Sung, J., Hong, S.: Related-key chosen IV attacks on Grain-v1 and Grain-128. In: Mu, Y., Susilo, W., Seberry, J. (eds.) ACISP 2008. LNCS, vol. 5107, pp. 321–335. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-70500-0_24

    Chapter  Google Scholar 

  25. Lu, X., Li, B., Jia, D.: KDM-CCA security from RKA secure authenticated encryption. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 559–583. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46800-5_22

    Chapter  Google Scholar 

  26. Lucks, S.: Ciphers secure against related-key attacks. In: Roy, B., Meier, W. (eds.) FSE 2004. LNCS, vol. 3017, pp. 359–370. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-25937-4_23

    Chapter  Google Scholar 

  27. Mège, A.: OFFICIAL COMMENT: PHOTON-Beetle (2021). https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/official-comments/photon-beetle-round2-official-comment.pdf

  28. Rogaway, P.: Efficient instantiations of tweakable blockciphers and refinements to modes OCB and PMAC. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 16–31. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30539-2_2

    Chapter  Google Scholar 

  29. Rogaway, P.: Nonce-based symmetric encryption. In: Roy, B., Meier, W. (eds.) FSE 2004. LNCS, vol. 3017, pp. 348–358. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-25937-4_22

    Chapter  MATH  Google Scholar 

  30. Rogaway, P., Shrimpton, T.: A provable-security treatment of the key-wrap problem. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 373–390. Springer, Heidelberg (2006). https://doi.org/10.1007/11761679_23

    Chapter  Google Scholar 

Download references

Acknowledgements

We thank GIFT-COFB team and the authors of [15, 16] for feedback on an earlier version of this paper. We thank the anonymous reviewers for helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuhiko Minematsu .

Editor information

Editors and Affiliations

A Specifications of \(\textsf {GIFT\text {-}COFB}\) and \(\textsf {Photon\text {-}Beetle}\)

A Specifications of \(\textsf {GIFT\text {-}COFB}\) and \(\textsf {Photon\text {-}Beetle}\)

Fig. 4.
figure 4

Algorithms of \(\textsf {GIFT\text {-}COFB}\) [3, Fig. 2.3]

Fig. 5.
figure 5

\(\textsf {GIFT\text {-}COFB}\).

Fig. 6.
figure 6

Algorithms of \(\textsf {Photon\text {-}Beetle}\) [6, Fig. 3.6]

Fig. 7.
figure 7

\(\textsf {Photon\text {-}Beetle}\).

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Inoue, A., Iwata, T., Minematsu, K. (2022). Analyzing the Provable Security Bounds of GIFT-COFB and Photon-Beetle. In: Ateniese, G., Venturi, D. (eds) Applied Cryptography and Network Security. ACNS 2022. Lecture Notes in Computer Science, vol 13269. Springer, Cham. https://doi.org/10.1007/978-3-031-09234-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-09234-3_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-09233-6

  • Online ISBN: 978-3-031-09234-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics