Abstract
Vision transformer architectures have been demonstrated to work very effectively for image classification tasks. Efforts to solve more challenging vision tasks with transformers rely on convolutional backbones for feature extraction. In this paper we investigate the use of a pure transformer architecture (i.e., one with no CNN backbone) for the problem of 2D body pose estimation. We evaluate two ViT architectures on the COCO dataset. We demonstrate that using an encoder-decoder transformer architecture yields state of the art results on this estimation problem.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
The research work was supported by the Hellenic Foundation for Research and Innovation (HFRI) under the HFRI PhD Fellowship grant (Fellowship Number: 1592) and by HFRI under the “1st Call for H.F.R.I Research Projects to support Faculty members and Researchers and the procurement of high-cost research equipment”, project I.C.Humans, number 91. This work was also partially supported by the NVIDIA “Academic Hardware Grant” program.
- 2.
Code is available on https://github.com/padeler/PE-former.
- 3.
We contacted the authors of TFPose for additional information to use in our comparison, such as number of parameters and AR scores but got no response.
- 4.
- 5.
- 6.
References
Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 213–229. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_13
Caron, M., et al.: Emerging properties in self-supervised vision transformers. arXiv preprint arXiv:2104.14294 (2021)
Dosovitskiy, A., et al.: An image is worth 16 \(\times \) 16 words: transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)
El-Nouby, A., et al.: Xcit: cross-covariance image transformers. arXiv preprint arXiv:2106.09681 (2021)
He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.: Masked autoencoders are scalable vision learners. arXiv preprint arXiv:2111.06377 (2021)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)
Li, K., Wang, S., Zhang, X., Xu, Y., Xu, W., Tu, Z.: Pose recognition with cascade transformers. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1944–1953 (2021)
Mao, W., Ge, Y., Shen, C., Tian, Z., Wang, X., Wang, Z.: Tfpose: direct human pose estimation with transformers. arXiv preprint arXiv:2103.15320 (2021)
Mehta, S., Rastegari, M.: Mobilevit: light-weight, general-purpose, and mobile-friendly vision transformer. arXiv preprint arXiv:2110.02178 (2021)
Stoffl, L., Vidal, M., Mathis, A.: End-to-end trainable multi-instance pose estimation with transformers. arXiv preprint arXiv:2103.12115 (2021)
Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5693–5703 (2019)
Touvron, H., Cord, M., Douze, M., Massa, F., Sablayrolles, A., Jégou, H.: Training data-efficient image transformers & distillation through attention. In: International Conference on Machine Learning, pp. 10347–10357. PMLR (2021)
Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, pp. 5998–6008 (2017)
Wang, S., Li, B.Z., Khabsa, M., Fang, H., Ma, H.: Linformer: self-attention with linear complexity. arXiv preprint arXiv:2006.04768 (2020)
Xiao, B., Wu, H., Wei, Y.: Simple baselines for human pose estimation and tracking. In: European Conference on Computer Vision (ECCV) (2018)
Xiong, Y., et al.: Nystr\(\backslash \)” omformer: A nystr\(\backslash \)” om-based algorithm for approximating self-attention. arXiv preprint arXiv:2102.03902 (2021)
Yang, S., Quan, Z., Nie, M., Yang, W.: Transpose: keypoint localization via transformer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 11802–11812 (2021)
Yuan, L., et al.: Tokens-to-token VIT: training vision transformers from scratch on imagenet. arXiv preprint arXiv:2101.11986 (2021)
Zhang, Z., Zhang, H., Zhao, L., Chen, T., Pfister, T.: Aggregating nested transformers. arXiv preprint arXiv:2105.12723 (2021)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 Springer Nature Switzerland AG
About this paper
Cite this paper
Panteleris, P., Argyros, A. (2022). PE-former: Pose Estimation Transformer. In: El Yacoubi, M., Granger, E., Yuen, P.C., Pal, U., Vincent, N. (eds) Pattern Recognition and Artificial Intelligence. ICPRAI 2022. Lecture Notes in Computer Science, vol 13364. Springer, Cham. https://doi.org/10.1007/978-3-031-09282-4_1
Download citation
DOI: https://doi.org/10.1007/978-3-031-09282-4_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-09281-7
Online ISBN: 978-3-031-09282-4
eBook Packages: Computer ScienceComputer Science (R0)