Skip to main content

Robust Detection of Conversational Groups Using a Voting Scheme and a Memory Process

  • Conference paper
  • First Online:
Pattern Recognition and Artificial Intelligence (ICPRAI 2022)

Abstract

Studies in human-human interaction have introduced the concept of F-formation to describe the spatial organization of participants during social interaction. This paper aims at detecting such F-formations in images of video sequences. The proposed approach combines a voting scheme in the visual field of each participant and a memory process to make the detection in each frame robust to small, irrelevant changes of participant’s behavior. Results on the MatchNMingle data set demonstrate the good performances of this approach.

This work was partly supported by the chair of I. Bloch in Artificial Intelligence (Sorbonne Université and SCAI).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Beebe, S.A., Masterson, J.T.: Communicating in Small Groups. Pearson Education, Boston (2003)

    Google Scholar 

  2. Cabrera-Quiros, L., Demetriou, A., Gedik, E., van der Meij, L., Hung, H.: The MatchNMingle dataset: a novel multi-sensor resource for the analysis of social interactions and group dynamics in-the-wild during free-standing conversations and speed dates. IEEE Trans. Affect. Comput. 12(1), 113–130 (2018)

    Article  Google Scholar 

  3. Cristani, M., et al.: Social interaction discovery by statistical analysis of F-formations. In: British Machine Vision Conference, vol. 2, p. 4 (2011)

    Google Scholar 

  4. Hall, E.T.: The Hidden Dimension, Reprint. Anchor Books, New York (1990)

    Google Scholar 

  5. Hu, S., et al.: A hybrid framework combining genetic algorithm with iterated local search for the dominating tree problem. Mathematics 7(4), 359 (2019)

    Google Scholar 

  6. Hubert, L., Arabie, P.: Comparing partitions. J. Classif. 2, 193–218 (1985)

    Article  Google Scholar 

  7. Hung, H., Kröse, B.: Detecting F-formations as dominant sets. In: 13th International Conference on Multimodal Interfaces, pp. 231–238 (2011)

    Google Scholar 

  8. Kendon, A.: Conducting Interaction: Patterns of Behavior in Focused Encounters, vol. 7. Cambridge University Press, Cambridge (1990)

    Google Scholar 

  9. Mohammadi, S., Setti, F., Perina, A., Cristani, M., Murino, V.: Groups and crowds: behaviour analysis of people aggregations. In: International Joint Conference on Computer Vision, Imaging and Computer Graphics, pp. 3–32 (2017)

    Google Scholar 

  10. Ramírez, O.A.I., Varni, G., Andries, M., Chetouani, M., Chatila, R.: Modeling the dynamics of individual behaviors for group detection in crowds using low-level features. In: 25th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN), pp. 1104–1111 (2016)

    Google Scholar 

  11. Rousseeuw, P.J.: Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 20, 53–65 (1987)

    Article  Google Scholar 

  12. Setti, F., Hung, H., Cristani, M.: Group detection in still images by F-formation modeling: A comparative study. In: 14th International Workshop on Image Analysis for Multimedia Interactive Services (WIAMIS), pp. 1–4. IEEE (2013)

    Google Scholar 

  13. Setti, F., Lanz, O., Ferrario, R., Murino, V., Cristani, M.: Multi-scale F-formation discovery for group detection. In: 2013 IEEE International Conference on Image Processing, pp. 3547–3551 (2013)

    Google Scholar 

  14. Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: individuating free-standing conversational groups in images. PLoS ONE 10(5), e0123783 (2015)

    Google Scholar 

  15. Thompson, S., Gupta, A., Gupta, A.W., Chen, A., Vázquez, M.: Conversational group detection with graph neural networks. In: International Conference on Multimodal Interaction, pp. 248–252 (2021)

    Google Scholar 

  16. Vascon, S., et al.: Detecting conversational groups in images and sequences: a robust game-theoretic approach. Comput. Vis. Image Underst. 143, 11–24 (2016)

    Google Scholar 

Download references

Acknowledgments

The experiments in this paper used the MatchNMingle Dataset made available by the Delft University of Technology, Delft, The Netherlands [2].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabelle Bloch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fortier, V., Bloch, I., Pélachaud, C. (2022). Robust Detection of Conversational Groups Using a Voting Scheme and a Memory Process. In: El Yacoubi, M., Granger, E., Yuen, P.C., Pal, U., Vincent, N. (eds) Pattern Recognition and Artificial Intelligence. ICPRAI 2022. Lecture Notes in Computer Science, vol 13364. Springer, Cham. https://doi.org/10.1007/978-3-031-09282-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-09282-4_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-09281-7

  • Online ISBN: 978-3-031-09282-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics