Skip to main content

ConDense: Multiple Additional Dense Layers with Fine-Grained Fully-Connected Layer Optimisation for Fingerprint Recognition

  • Conference paper
  • First Online:
Pattern Recognition and Artificial Intelligence (ICPRAI 2022)

Abstract

Fingerprint recognition is now a common, well known and generally accepted form of biometric authentication. The popularity of fingerprint recognition also makes it the focus of many studies which aim to constantly improve the technology in terms of factors such as accuracy and speed. This study sets out to create fingerprint recognition architectures which improve upon pre-trained architectures - named ConDense - that provide stronger if not comparable accuracy in comparison to related works on the authentication/identification task. Each of these ConDense architectures are tested against databases 1A, 2A, 3A provided by FVC 2006. The ConDense architectures presented in this study performed well across the varying image qualities in the given databases, with the lowest EERs achieved by this study’s architectures being 1.385% (DB1A), 0.041% (DB2A) and 0.871% (DB3A). In comparison to related works, the architectures presented in this study performed the best in terms of EER against DB1A, and DB3A. The lowest EER for DB2A reported by a related work was 0.00%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agarwal, D., Garima, Bansal, A.: A utility of ridge contour points in minutiae-based fingerprint matching. In: Chaki, N., Pejas, J., Devarakonda, N., Rao Kovvur, R.M. (eds.) ICCIDE 2020, pp. 273–286. Springer, Singapore (2021). https://doi.org/10.1007/978-981-15-8767-2_24

  2. Cappelli, R., Ferrara, M., Franco, A., Maltoni, D.: Fingerprint verification competition 2006. Biometric Technol. Today 15(7), 7–9 (2007)

    Article  Google Scholar 

  3. Chollet, F.: Xception: deep learning with depthwise separable convolutions. CoRR abs/1610.02357 (2016). http://arxiv.org/abs/1610.02357

  4. Fierrez, J., Ortega-Garcia, J., Torre-Toledano, D., Gonzalez-Rodriguez, J.: BioSec baseline corpus: a multimodal biometric database. Pattern Recogn. 40(4), 1389–1392 (2007)

    Article  Google Scholar 

  5. He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. CoRR abs/1603.05027 (2016). http://arxiv.org/abs/1603.05027

  6. He, Z., Liu, E., Xiang, Z.: Partial fingerprint verification via spatial transformer networks. In: 2020 IEEE International Joint Conference on Biometrics (IJCB), pp. 1–10 (2020)

    Google Scholar 

  7. Kaggwa, F., Ngubiri, J., Tushabe, F.: Combined feature level and score level fusion Gabor filter-based multiple enrollment fingerprint recognition. In: 2016 International Conference on Signal Processing, Communication, Power and Embedded System (SCOPES), pp. 159–165 (2016)

    Google Scholar 

  8. Khazaei, H., Mohades, A.: Fingerprint matching algorithm based on Voronoi diagram. In: 2008 International Conference on Computational Sciences and Its Applications, pp. 433–440 (2008)

    Google Scholar 

  9. Maio, D., Maltoni, D., Cappelli, R., Wayman, J., Jain, A.: FVC 2000: fingerprint verification competition. IEEE Trans. Pattern Anal. Mach. Intell. 24(3), 402–412 (2002)

    Article  Google Scholar 

  10. O’Malley, T., et al.: Kerastuner (2019). https://github.com/keras-team/keras-tuner

  11. Priesnitz, J., Huesmann, R., Rathgeb, C., Buchmann, N., Busch, C.: Mobile touchless fingerprint recognition: implementation, performance and usability aspects. Sensors 22, 792 (2021)

    Article  Google Scholar 

  12. Sabir, M., Khan, T., Arshad, M., Munawar, S.: Reducing computational complexity in fingerprint matching. Turk. J. Electr. Eng. Comput. Sci. 28, 2538–2551 (2020)

    Article  Google Scholar 

  13. Sanchez-Fernandez, A.J., et al.: Asynchronous processing for latent fingerprint identification on heterogeneous CPU-GPU systems. IEEE Access 8, 124236–124253 (2020)

    Article  Google Scholar 

  14. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. CoRR abs/1512.00567 (2015). http://arxiv.org/abs/1512.00567

  15. Wahby Shalaby, M., Omair Ahmad, M.: A multilevel structural technique for fingerprint representation and matching. Sig. Process. 93(1), 56–69 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dustin van der Haar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lang, D., van der Haar, D. (2022). ConDense: Multiple Additional Dense Layers with Fine-Grained Fully-Connected Layer Optimisation for Fingerprint Recognition. In: El Yacoubi, M., Granger, E., Yuen, P.C., Pal, U., Vincent, N. (eds) Pattern Recognition and Artificial Intelligence. ICPRAI 2022. Lecture Notes in Computer Science, vol 13364. Springer, Cham. https://doi.org/10.1007/978-3-031-09282-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-09282-4_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-09281-7

  • Online ISBN: 978-3-031-09282-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics