Abstract
After Transformer was first proposed by Vaswani et al. [1] in 2017, Transformer model has revolutionized and become the dominant methods in the field of natural language processing (NLP) which has achieved significant achievement. Transformer was first applied to Computer Vision fields in 2020, which called Vision Transformer (ViT) proposed by Dosovitskiy et al. ViT achieved state-of-the-art on image classification tasks at that time. In the past two years, the proliferation of Transformer in CV proves the effectiveness and breakthrough in various tasks including image classification, object detection, segmentation and low-level image tasks. In this paper, we focus on a review of Transformer-based models improved by ViT and Transformer backbones which is suitable for all kinds of image-level tasks, analyzing their improvement mechanisms, strengths and weaknesses. Furthermore, we briefly introduce the effective improvement of self-attention mechanism. In the end of this paper, some prospects have been put forward for future development on basis of the above Transformer-based models.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, pp. 5998–6008 (2017)
Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding (2018). arXiv preprint arXiv:1810.04805
Brown, T.B., et al.: Language models are few-shot learners (2020). arXiv preprint arXiv:2005.14165
Liu, Y., et al.: Roberta: a robustly optimized BERT pretraining approach (2019). arXiv preprint arXiv:1907.11692
Lan, Z., Chen, M., Goodman, S., Gimpel, K., Sharma, P., Soricut, R.: Albert: a lite bert for self-supervised learning of language representations (2019). arXiv preprint arXiv:1909.11942
Yang, Z., Dai, Z., Yang, Y., Carbonell, J., Salakhutdinov, R.R., Le, Q.V.: XLNet: generalized autoregressive pretraining for language understanding. In: Advances in Neural Information Processing Systems, vol. 32 (2019)
Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image recognition at scale (2020). arXiv preprint arXiv:2010.11929
Posner, M.I.: Attention: the mechanisms of consciousness. Proc. Natl. Acad. Sci. 91(16), 7398–7403 (1994)
Mnih, V., Heess, N., Graves, A.: Recurrent models of visual attention. In: Advances in Neural Information Processing Systems, pp. 2204–2212 (2014)
Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate (2014). arXiv preprint arXiv:1409.0473
Zheng, G., Mukherjee, S., Dong, X.L., Li, F.: OpenTag: open attribute value extraction from product profiles. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 1049–1058, July 2018
Yang, Z., Yang, D., Dyer, C., He, X., Smola, A., Hovy, E.: Hierarchical attention networks for document classification. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp. 1480–1489, June 2016
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)
Sun, C., Shrivastava, A., Singh, S., Gupta, A.: Revisiting unreasonable effectiveness of data in deep learning era. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 843–852 (2017)
Touvron, H., Cord, M., Douze, M., Massa, F., Sablayrolles, A., Jégou, H.: Training data-efficient image transformers & distillation through attention. In: International Conference on Machine Learning, pp. 10347–10357. PMLR, July 2021
Wu, H., et al.: CvT: Introducing convolutions to vision transformers (2021). arXiv preprint arXiv:2103.15808
Chu, X., Zhang, B., Tian, Z., Wei, X., Xia, H.: Do we really need explicit position encodings for vision transformers?. arXiv e-prints, arXiv-2102 (2021)
Zhang, Q., Yang, Y.:. ResT: an efficient transformer for visual recognition (2021). arXiv preprint arXiv:2105.13677
Han, K., Xiao, A., Wu, E., Guo, J., Xu, C., Wang, Y.: Transformer in transformer (2021). arXiv preprint arXiv:2103.00112
Chen, C.F., Fan, Q., Panda, R.: CrossViT: cross-attention multi-scale vision transformer for image classification (2021). arXiv preprint arXiv:2103.14899
Li, Y., Zhang, K., Cao, J., Timofte, R., Van Gool, L.: LocalViT: bringing locality to vision transformers (2021). arXiv preprint arXiv:2104.05707
Heo, B., Yun, S., Han, D., Chun, S., Choe, J., Oh, S.J.: Rethinking spatial dimensions of vision transformers (2021). arXiv preprint arXiv:2103.16302
Wang, W., et al.: Pyramid vision transformer: a versatile backbone for dense prediction without convolutions. arXiv e-prints, arXiv-2102 (2021)
Wang, W., et al.: PVTv2: improved baselines with pyramid vision transformer (2021). arXiv preprint arXiv:2106.13797
Liu, Z., et al.: Swin transformer: hierarchical vision transformer using shifted windows (2021). arXiv preprint arXiv:2103.14030
Dong, X., et al.: CSWin transformer: a general vision transformer backbone with cross-shaped windows (2021). arXiv preprint arXiv:2107.00652
Yang, J., et al.: Focal self-attention for local-global interactions in vision transformers (2021). arXiv preprint arXiv:2107.00641
Huang, Z., Ben, Y., Luo, G., Cheng, P., Yu, G., Fu, B.: Shuffle transformer: rethinking spatial shuffle for vision transformer (2021). arXiv preprint arXiv:2106.03650
Chu, X., et al.: Twins: revisiting the design of spatial attention in vision transformers. In: Thirty-Fifth Conference on Neural Information Processing Systems, May 2021
Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2980–2988 (2017)
He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2961–2969 (2017)
Yuan, L., et al.: Tokens-to-token ViT: training vision transformers from scratch on ImageNet (2021). arXiv preprint arXiv:2101.11986
Zhang, X., Zhou, X., Lin, M., Sun, J.: ShuffleNet: an extremely efficient convolutional neural network for mobile devices. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6848–6856 (2018)
Acknowledgments
This work was supported by Guangdong Province Key Laboratory of Computational Science at the Sun Yat-sen University (2020B1212060032), the National Natural Science Foundation of China (Grant no. 11971491, 11471012).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 Springer Nature Switzerland AG
About this paper
Cite this paper
Huang, X., Bi, N., Tan, J. (2022). Visual Transformer-Based Models: A Survey. In: El Yacoubi, M., Granger, E., Yuen, P.C., Pal, U., Vincent, N. (eds) Pattern Recognition and Artificial Intelligence. ICPRAI 2022. Lecture Notes in Computer Science, vol 13364. Springer, Cham. https://doi.org/10.1007/978-3-031-09282-4_25
Download citation
DOI: https://doi.org/10.1007/978-3-031-09282-4_25
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-09281-7
Online ISBN: 978-3-031-09282-4
eBook Packages: Computer ScienceComputer Science (R0)