Skip to main content

A Sensor-Independent Multimodal Fusion Scheme for Human Activity Recognition

  • Conference paper
  • First Online:
Pattern Recognition and Artificial Intelligence (ICPRAI 2022)

Abstract

Human Activity Recognition is a field that provides the fundamentals for Ambient Intelligence and Assisted Living Applications. Multimodal methods for Human Activity Recognition utilize different sensors and fuse them together to provide higher-accuracy results. These methods require data for all sensors employed to operate with. In this work we present a sensor-independent, in regards to the number of sensors used, scheme for designing multimodal methods that operate when sensor-data are missing. Furthermore, we present a data augmentation method that increases the fusion model’s accuracy (up to \(11\%\) increases) when operating with missing sensor-data. The proposed method’s effectiveness is evaluated on the ExtraSensory dataset, which contains over 300,000 samples from 60 users, collected from smartphones and smartwatches. In addition, the methods are evaluated for different number of sensors used at the same time. However, the max number of sensors must be known beforehand.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aggarwal, J.K., Xia, L.: Human activity recognition from 3d data: a review. Pattern Recogn. Lett. 48, 70–80 (2014)

    Article  Google Scholar 

  2. Barrios-Avilés, J., Iakymchuk, T., Samaniego, J., Medus, L.D., Rosado-Muñoz, A.: Movement detection with event-based cameras: comparison with frame-based cameras in robot object tracking using powerlink communication. Electronics 7(11), 304 (2018)

    Article  Google Scholar 

  3. Batchuluun, G., Nguyen, D.T., Pham, T.D., Park, C., Park, K.R.: Action recognition from thermal videos. IEEE Access 7, 103893–103917 (2019)

    Article  Google Scholar 

  4. Chandrasekaran, B., Gangadhar, S., Conrad, J.M.: A survey of multisensor fusion techniques, architectures and methodologies. In: SoutheastCon 2017, pp. 1–8. IEEE (2017)

    Google Scholar 

  5. Dong, Y., Li, X., Dezert, J., Khyam, M.O., Noor-A-Rahim, M., Ge, S.S.: Dezert-Smarandache theory-based fusion for human activity recognition in body sensor networks. IEEE Trans. Industr. Inf. 16(11), 7138–7149 (2020)

    Article  Google Scholar 

  6. Ehatisham-Ul-Haq, M.: Robust human activity recognition using multimodal feature-level fusion. IEEE Access 7, 60736–60751 (2019)

    Article  Google Scholar 

  7. Grabisch, M., Raufaste, E.: An empirical study of statistical properties of the Choquet and Sugeno integrals. IEEE Trans. Fuzzy Syst. 16(4), 839–850 (2008)

    Article  Google Scholar 

  8. Innocenti, S.U., Becattini, F., Pernici, F., Del Bimbo, A.: Temporal binary representation for event-based action recognition. In: 2020 25th International Conference on Pattern Recognition (ICPR), pp. 10426–10432. IEEE (2021)

    Google Scholar 

  9. Lee, Y.-S., Cho, S.-B.: Activity recognition using hierarchical hidden Markov models on a smartphone with 3d accelerometer. In: Corchado, E., Kurzyński, M., Woźniak, M. (eds.) HAIS 2011. LNCS (LNAI), vol. 6678, pp. 460–467. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21219-2_58

    Chapter  Google Scholar 

  10. Li, H., et al.: Multisensor data fusion for human activities classification and fall detection. In: 2017 IEEE SENSORS, pp. 1–3. IEEE (2017)

    Google Scholar 

  11. Naik, K., Pandit, T., Naik, N., Shah, P.: Activity recognition in residential spaces with internet of things devices and thermal imaging. Sensors 21(3), 988 (2021)

    Article  Google Scholar 

  12. Nweke, H.F., Teh, Y.W., Mujtaba, G., Al-Garadi, M.A.: Data fusion and multiple classifier systems for human activity detection and health monitoring: review and open research directions. Inf. Fusion 46, 147–170 (2019)

    Article  Google Scholar 

  13. Ordóñez, F.J., Roggen, D.: Deep convolutional and LSTM recurrent neural networks for multimodal wearable activity recognition. Sensors 16(1), 115 (2016)

    Article  Google Scholar 

  14. Sebestyen, G., Stoica, I., Hangan, A.: Human activity recognition and monitoring for elderly people. In: 2016 IEEE 12th International Conference on Intelligent Computer Communication and Processing (ICCP), pp. 341–347. IEEE (2016)

    Google Scholar 

  15. Uddin, M.Z., Soylu, A.: Human activity recognition using wearable sensors, discriminant analysis, and long short-term memory-based neural structured learning. Sci. Rep. 11(1), 16455 (2021)

    Article  Google Scholar 

  16. Vaizman, Y., Ellis, K., Lanckriet, G.: Recognizing detailed human context in the wild from smartphones and smartwatches. IEEE Pervasive Comput. 16(4), 62–74 (2017). https://doi.org/10.1109/MPRV.2017.3971131

    Article  Google Scholar 

  17. Vrigkas, M., Nikou, C., Kakadiaris, I.A.: A review of human activity recognition methods. Front. Robot. AI 2, 28 (2015). https://doi.org/10.3389/frobt.2015.00028

    Article  Google Scholar 

  18. Wang, L., Huynh, D.Q., Koniusz, P.: A comparative review of recent kinect-based action recognition algorithms. IEEE Trans. Image Process. 29, 15–28 (2019)

    Article  MathSciNet  Google Scholar 

  19. Wu, Q., Wang, Z., Deng, F., Chi, Z., Feng, D.D.: Realistic human action recognition with multimodal feature selection and fusion. IEEE Trans. Syst. Man Cybern. Syst. 43(4), 875–885 (2013). https://doi.org/10.1109/TSMCA.2012.2226575

    Article  Google Scholar 

  20. Yao, S., Hu, S., Zhao, Y., Zhang, A., Abdelzaher, T.: DeepSense: a unified deep learning framework for time-series mobile sensing data processing. In: Proceedings of the 26th International Conference on World Wide Web, pp. 351–360 (2017)

    Google Scholar 

  21. Zeng, Z., Zhang, Z., Pianfetti, B., Tu, J., Huang, T.S.: Audio-visual affect recognition in activation-evaluation space. In: 2005 IEEE International Conference on Multimedia and Expo, p. 4. IEEE (2005)

    Google Scholar 

  22. Zhang, S., Wei, Z., Nie, J., Huang, L., Wang, S., Li, Z.: A review on human activity recognition using vision-based method. J. Healthc. Eng. 2017, 3090343 (2017)

    Google Scholar 

  23. Zhu, C., Sheng, W.: Multi-sensor fusion for human daily activity recognition in robot-assisted living. In: Proceedings of the 4th ACM/IEEE International Conference on Human Robot Interaction, pp. 303–304 (2009)

    Google Scholar 

Download references

Acknowledgments

The research work was supported by the Hellenic Foundation for Research and Innovation (H.F.R.I.) under the “First Call for H.F.R.I. Research Projects to support Faculty members and Researchers and the procurement of high-cost research equipment grant” (Project Name: ACTIVE, Project Number: HFRI-FM17-2271).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anastasios Alexiadis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Alexiadis, A., Nizamis, A., Giakoumis, D., Votis, K., Tzovaras, D. (2022). A Sensor-Independent Multimodal Fusion Scheme for Human Activity Recognition. In: El Yacoubi, M., Granger, E., Yuen, P.C., Pal, U., Vincent, N. (eds) Pattern Recognition and Artificial Intelligence. ICPRAI 2022. Lecture Notes in Computer Science, vol 13364. Springer, Cham. https://doi.org/10.1007/978-3-031-09282-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-09282-4_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-09281-7

  • Online ISBN: 978-3-031-09282-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics