Skip to main content

Progressive Clustering: An Unsupervised Approach Towards Continual Knowledge Acquisition of Incremental Data

  • Conference paper
  • First Online:
Pattern Recognition and Artificial Intelligence (ICPRAI 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13364))

  • 1072 Accesses

Abstract

In this paper, we propose a categorization strategy to handle the incremental nature of data by identifying concepts of drift in the data stream. In the world of digitalization, the total amount of data created, captured, copied, and consumed is increasing rapidly, reaching a few zettabytes. Various fields of data mining and machine learning applications involve clustering as their principal component, considering the non-incremental nature of the data. However, many real-world machine learning algorithms need to adapt to this ever-growing global data sphere to continually learn new patterns. In addition, the model needs to be acquainted with the continuous change in the distribution of the input data. Towards this, we propose a clustering algorithm termed as Progressive Clustering to foresee the phenomenon of increase in data and sustain it until the pattern of the data changes considerably. We demonstrate the results of our clustering algorithm by simulating various instances of the incremental nature of the data in the form of a data stream. We demonstrate the results of our proposed methodology on benchmark MNIST and Fashion-MNIST datasets and evaluate our strategy using appropriate quantitative metrics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Castro, F.M., Marín-Jiménez, M.J., Mata, N.G., Schmid, C., Karteek, A.: End-to-end incremental learning. arXiv abs/1807.09536 (2018)

    Google Scholar 

  2. Chen, J., Zhang, L., Liang, Y.: Exploiting gaussian mixture model clustering for full-duplex transceiver design. IEEE Trans. Commun. 67(8), 5802–5816 (2019). https://doi.org/10.1109/TCOMM.2019.2915225

    Article  Google Scholar 

  3. Du, X., Charan, G., Liu, F., Cao, Y.: Single-net continual learning with progressive segmented training. In: 2019 18th IEEE International Conference on Machine Learning and Applications (ICMLA), pp. 1629–1636 (2019). https://doi.org/10.1109/ICMLA.2019.00267

  4. Guo, X., Gao, L., Liu, X., Yin, J.: Improved deep embedded clustering with local structure preservation, August 2017. https://doi.org/10.24963/ijcai.2017/243

  5. Guo, X., Liu, X., Zhu, E., Yin, J.: Deep clustering with convolutional autoencoders. In: Liu, D., Xie, S., Li, Y., Zhao, D., El-Alfy, E.S. (eds.) Neural Information Processing, ICONIP 2017. LNCS, vol. 10635, pp. 373–382. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70096-0_39

  6. Guo, X., Zhu, E., Liu, X., Yin, J.: Deep embedded clustering with data augmentation. In: Zhu, J., Takeuchi, I. (eds.) Proceedings of The 10th Asian Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 95, pp. 550–565. PMLR, 14–16 November 2018. http://proceedings.mlr.press/v95/guo18b.html

  7. Hoens, T., Polikar, R., Chawla, N.: Learning from streaming data with concept drift and imbalance: an overview. Prog. Artif. Intell. 1(1), 89–101 (2012). https://doi.org/10.1007/s13748-011-0008-0, Copyright: Copyright 2021 Elsevier B.V., All rights reserved

  8. Kirkpatrick, J., et al.: Overcoming catastrophic forgetting in neural networks. Proc. Natl. Acad. Sci. 114(13), 3521–3526 (2017). https://doi.org/10.1073/pnas.1611835114, https://www.pnas.org/content/114/13/3521

  9. Kuncheva, L.I.: Classifier ensembles for changing environments. In: Roli, F., Kittler, J., Windeatt, T. (eds.) MCS 2004. LNCS, vol. 3077, pp. 1–15. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-25966-4_1

    Chapter  Google Scholar 

  10. LeCun, Y., Cortes, C.: MNIST handwritten digit database (2010). http://yann.lecun.com/exdb/mnist/

  11. Li, Y., Wu, H.: A clustering method based on k-means algorithm. Physics Procedia 25, 1104–1109 (2012). https://doi.org/10.1016/j.phpro.2012.03.206

  12. Mallya, A., Davis, D., Lazebnik, S.: Piggyback: adapting a single network to multiple tasks by learning to mask weights (2018)

    Google Scholar 

  13. Mallya, A., Lazebnik, S.: PackNet: adding multiple tasks to a single network by iterative pruning, pp. 7765–7773, June 2018. https://doi.org/10.1109/CVPR.2018.00810

  14. Rebuffi, S.A., Kolesnikov, A., Sperl, G., Lampert, C.H.: ICARL: incremental classifier and representation learning. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5533–5542 (2017). https://doi.org/10.1109/CVPR.2017.587

  15. Rusu, A.A., et al.: Progressive neural networks (2016)

    Google Scholar 

  16. Tabib, R.A., et al.: Deep features for categorization of heritage images towards 3D reconstruction. Procedia Comput. Sci. 171, 483–490 (2020). https://doi.org/10.1016/j.procs.2020.04.051, https://www.sciencedirect.com/science/article/pii/S1877050920310176, Third International Conference on Computing and Network Communications (CoCoNet 2019)

  17. Xiao, H., Rasul, K., Vollgraf, R.: Fashion-MNIST: a novel image dataset for benchmarking machine learning algorithms (2017)

    Google Scholar 

  18. Xie, J., Girshick, R., Farhadi, A.: Unsupervised deep embedding for clustering analysis (2016)

    Google Scholar 

  19. Yoon, J., Yang, E., Lee, J., Hwang, S.J.: Lifelong learning with dynamically expandable networks (2018)

    Google Scholar 

Download references

Acknowledgement

This project is partly carried out under Department of Science and Technology (DST) through ICPS programme - Indian Heritage in Digital Space for the project “CrowdSourcing” (DST/ ICPS/ IHDS/ 2018 (General)) and “Digital Poompuhar” (DST/ ICPS/ Digital Poompuhar/ 2017 (General)).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akshaykumar Gunari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gunari, A., Kudari, S.V., Tabib, R.A., Mudenagudi, U. (2022). Progressive Clustering: An Unsupervised Approach Towards Continual Knowledge Acquisition of Incremental Data. In: El Yacoubi, M., Granger, E., Yuen, P.C., Pal, U., Vincent, N. (eds) Pattern Recognition and Artificial Intelligence. ICPRAI 2022. Lecture Notes in Computer Science, vol 13364. Springer, Cham. https://doi.org/10.1007/978-3-031-09282-4_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-09282-4_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-09281-7

  • Online ISBN: 978-3-031-09282-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics