Skip to main content

A Deep Learning Approach to Detect Ventilatory Over-Assistance

  • Conference paper
  • First Online:
Pattern Recognition and Artificial Intelligence (ICPRAI 2022)

Abstract

We propose a novel, end-to-end, decision support system, to facilitate ICU clinicians to identify ventilatory over-assistance and titrate the level of respiratory support. Our method consists of a wavelet-based algorithm to automatically segment distinct breaths in mechanical ventilator respiratory recordings, and a 1D CNN schema for the classification of new respirations. A dataset of 40 respiratory recordings, taken from 38 ICU patients, was used for quantitative performance assessment, where our approach achieved impressive results in detecting ventilatory over-assistance in a total of 76,595 distinct breath patterns. The proposed system is non-invasive, requires no changes in clinical practice and is readily applicable to contemporary mechanical ventilators. Accordingly, it facilitates efficient ventilator exploitation and reduces the risk of mechanical ventilation complications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Akoumianaki, E., et al.: The application of esophageal pressure measurement in patients with respiratory failure. Am. J. Respir. Crit. Care Med. 189(5), 520–531 (2014)

    Article  Google Scholar 

  2. Albani, F., et al.: Flow index accurately identifies breaths with low or high inspiratory effort during pressure support ventilation. Crit. Care 25(1), 1–11 (2021)

    Article  Google Scholar 

  3. Dres, M., Goligher, E.C., Heunks, L.M., Brochard, L.J.: Critical illness-associated diaphragm weakness. Intensive Care Med. 43(10), 1441–1452 (2017). https://doi.org/10.1007/s00134-017-4928-4

  4. Ismail Fawaz, H., Forestier, G., Weber, J., Idoumghar, L., Muller, P.-A.: Deep learning for time series classification: a review. Data Min. Knowl. Discov. 33(4), 917–963 (2019). https://doi.org/10.1007/s10618-019-00619-1

    Article  MathSciNet  MATH  Google Scholar 

  5. Geurts, P.: Pattern extraction for time series classification. In: De Raedt, L., Siebes, A. (eds.) PKDD 2001. LNCS (LNAI), vol. 2168, pp. 115–127. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44794-6_10

    Chapter  Google Scholar 

  6. Goligher, E.C., et al.: Mechanical ventilation-induced diaphragm atrophy strongly impacts clinical outcomes. Am. J. Respir. Crit. Care Med. 197(2), 204–213 (2018)

    Article  Google Scholar 

  7. Ilyas, I.F., Chu, X.: Data Cleaning. Morgan & Claypool (2019)

    Google Scholar 

  8. Kaczka, D., Dellacá, R.L.: Oscillation mechanics of the respiratory system: applications to lung disease. Crit. Rev. Biomed. Eng. 39(4) (2011)

    Google Scholar 

  9. Khan, A., Sohail, A., Zahoora, U., Qureshi, A.S.: A survey of the recent architectures of deep convolutional neural networks. Artif. Intell. Rev. 53(8), 5455–5516 (2020). https://doi.org/10.1007/s10462-020-09825-6

    Article  Google Scholar 

  10. Kiranyaz, S., et al.: 1D convolutional neural networks and applications: a survey. Mech. Syst. Signal Process. 151, 107398 (2021)

    Google Scholar 

  11. Lassola, S., et al.: Central venous pressure swing outperforms diaphragm ultrasound as a measure of inspiratory effort during pressure support ventilation in COVID-19 patients. J. Clin. Monit. Comput., 1–11 (2021)

    Google Scholar 

  12. Lopez-Meyer, P., Sazonov, E.: Automatic breathing segmentation from wearable respiration sensors. In: Fifth International Conference on Sensing Technology. IEEE (2011)

    Google Scholar 

  13. Noto, T., Zhou, G., Schuele, S., Templer, J., Zelano, C.: Automated analysis of breathing waveforms using breathmetrics: a respiratory signal processing toolbox. Chem. Senses 43(8), 583–597 (2018)

    Google Scholar 

  14. Ranieri, M.V., et al.: Effects of proportional assist ventilation on inspiratory muscle effort in patients with chronic obstructive pulmonary disease and acute respiratory failure. J. Am. Soc. Anesthesiol. 86(1), 79–91 (1997)

    Google Scholar 

  15. Sassoon, C.S.: Triggering of the ventilator in patient-ventilator interactions. Respir. Care 56(1), 39–51 (2011)

    Google Scholar 

  16. Smirnov, D., Nguifo, E.M.: Time series classification with recurrent neural networks. In: Advanced Analytics and Learning on Temporal Data 8 (2018)

    Google Scholar 

  17. Spadaro, S., et al.: Impact of prolonged assisted ventilation on diaphragmatic efficiency: NAVA versus PSV. Crit. Care 20(1), 1–12 (2015)

    Google Scholar 

  18. Telias, I., et al.: Airway occlusion pressure as an estimate of respiratory drive and inspiratory effort during assisted ventilation. Am. J. Respir. Crit. Care Med. 201(9), 1086–1098 (2020)

    Google Scholar 

  19. Umbrello, M., et al.: Oesophageal pressure and respiratory muscle ultrasonographic measurements indicate inspiratory effort during pressure support ventilation. Br. J. Anaesth. 125(1), e148–e157 (2020)

    Google Scholar 

  20. Vaporidi, K.: NAVA and PAV+ for lung and diaphragm protection. Curr. Opin. Crit. Care 26(1), 41–46 (2020)

    Google Scholar 

  21. Vaporidi, K., et al.: Esophageal and transdiaphragmatic pressure swings as indices of inspiratory effort. Respir. Physiol. Neurobiol. 284, 103561 (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emmanouil Sylligardos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sylligardos, E., Sigalas, M., Soundoulounaki, S., Vaporidi, K., Trahanias, P. (2022). A Deep Learning Approach to Detect Ventilatory Over-Assistance. In: El Yacoubi, M., Granger, E., Yuen, P.C., Pal, U., Vincent, N. (eds) Pattern Recognition and Artificial Intelligence. ICPRAI 2022. Lecture Notes in Computer Science, vol 13364. Springer, Cham. https://doi.org/10.1007/978-3-031-09282-4_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-09282-4_42

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-09281-7

  • Online ISBN: 978-3-031-09282-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics