Skip to main content

Enhancing Fairness in Classification Tasks with Multiple Variables: A Data- and Model-Agnostic Approach

  • Conference paper
  • First Online:
Advances in Bias and Fairness in Information Retrieval (BIAS 2022)

Abstract

Nowadays assuring that search and recommendation systems are fair and do not apply discrimination among any kind of population has become of paramount importance. Those systems typically rely on machine learning algorithms that solve the classification task. Although the problem of fairness has been widely addressed in binary classification, unfortunately, the fairness of multi-class classification problem needs to be further investigated lacking well-established solutions. For the aforementioned reasons, in this paper, we present the Debiaser for Multiple Variables, a novel approach able to enhance fairness in both binary and multi-class classification problems. The proposed method is compared, under several conditions, with the well-established baseline. We evaluate our method on a heterogeneous data set and prove how it overcomes the established algorithms in the multi-classification setting, while maintaining good performances in binary classification. Finally, we present some limitations and future improvements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The variables can be binary, discrete or categorical ones.

References

  1. AI Fairness 360 - Resources. https://aif360.mybluemix.net/resources#guidance

  2. Agarwal, A., Beygelzimer, A., Dudík, M., Langford, J., Wallach, H.: A reductions approach to fair classification. arXiv:1803.02453 [cs], July 2018. arXiv: 1803.02453

  3. Angwin, J., Larson, J., Mattu, S., Kirchner, L.: Machine Bias. ProPublica, pp. 139–159, 23 May 2016

    Google Scholar 

  4. Austin, K.A., Christopher, C.M., Dickerson, D.: Will I pass the bar exam: Will I pass the bar exam: predicting student success using LSAT scores and law school performance. HofstrA l. Rev. 45, 753 (2016)

    Google Scholar 

  5. Bird, S., et al.: Fairlearn: a toolkit for assessing and improving fairness in AI. Tech. Rep. MSR-TR-2020-32, Microsoft, May 2020. https://www.microsoft.com/en-us/research/publication/fairlearn-a-toolkit-for-assessing-and-improving-fairness-in-ai/

  6. Calders, T., Karim, A., Kamiran, F., Ali, W., Zhang, X.: Controlling attribute effect in linear regression. In: 2013 IEEE 13th International Conference on Data Mining, pp. 71–00, December 2013. https://doi.org/10.1109/ICDM.2013.114, ISSN: 2374-8486

  7. Caton, S., Haas, C.: Fairness in machine learning: a survey. arXiv:2010.04053 [cs, stat] (October 2020), arXiv: 2010.04053

  8. Cortez, P., Cerdeira, A., Almeida, F., Matos, T., Reis, J.: Modeling wine preferences by data mining from physicochemical properties. Decis. Supp. Syst. 47(4), 547–553 (2009)

    Article  Google Scholar 

  9. DaliaResearch: The Trump Effect in Europe (2017). https://www.kaggle.com/daliaresearch/trump-effect

  10. Domingos, P., Pazzani, M.: On the optimality of the simple Bayesian classifier under zero-one loss. Mach. Learning 29(2), 103–130 (1997)

    Article  Google Scholar 

  11. Dwork, C., Hardt, M., Pitassi, T., Reingold, O., Zemel, R.: Fairness through awareness. In: Proceedings of the 3rd Innovations in Theoretical Computer Science Conference, pp. 214–226. ITCS ’12, Association for Computing Machinery, New York, NY, USA, January 2012. https://doi.org/10.1145/2090236.2090255

  12. Feldman, M., Friedler, S.A., Moeller, J., Scheidegger, C., Venkatasubramanian, S.: Certifying and removing disparate impact. In: Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 259–268. ACM, Sydney NSW Australia, Aug 2015. https://doi.org/10.1145/2783258.2783311

  13. Friedler, S.A., Scheidegger, C., Venkatasubramanian, S.: On the (im) possibility of fairness. arXiv preprint arXiv:1609.07236 (2016)

  14. Hajian, S., Bonchi, F., Castillo, C.: Algorithmic bias: from discrimination discovery to fairness-aware data mining. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016, pp. 2125–2126. ACM (2016)

    Google Scholar 

  15. Hardt, M., Price, E., Srebro, N.: Equality of opportunity in supervised learning. Adv. Neural Inf. Process. Syst. 29, 3315–3323 (2016)

    Google Scholar 

  16. Jiang, C., Liu, Y., Ding, Y., Liang, K., Duan, R.: Capturing helpful reviews from social media for product quality improvement: a multi-class classification approach. Int. J. Prod. Res. 55(12), 3528–3541 (2017)

    Article  Google Scholar 

  17. Kamiran, F., Calders, T.: Data preprocessing techniques for classification without discrimination. Knowl. Inf. Syst. 33(1), 1–33 (2012). https://doi.org/10.1007/s10115-011-0463-8

    Article  Google Scholar 

  18. Kohavi, R., et al.: Scaling up the accuracy of naive-Bayes classifiers: a decision-tree hybrid. In: KDD’96: Proceedings of the Second International Conference on Knowledge Discovery and Data Mining, pp. 202–207 (1996)

    Google Scholar 

  19. Krishnaswamy, A., Jiang, Z., Wang, K., Cheng, Y., Munagala, K.: Fair for all: best-effort fairness guarantees for classification. In: International Conference on Artificial Intelligence and Statistics, pp. 3259–3267. PMLR (2021)

    Google Scholar 

  20. Kusner, M.J., Loftus, J., Russell, C., Silva, R.: Counterfactual fairness. In: Advances in Neural Information Processing Systems. vol. 30. Curran Associates, Inc. (2017)

    Google Scholar 

  21. Le, Y., He, C., Chen, M., Wu, Y., He, X., Zhou, B.: Learning to predict charges for legal judgment via self-attentive capsule network. In: ECAI 2020, pp. 1802–1809. IOS Press, Red Hook (2020)

    Google Scholar 

  22. Lim, T.S., Loh, W.Y., Shih, Y.S.: A comparison of prediction accuracy, complexity, and training time of thirty-three old and new classification algorithms. Mach. Learn. 40(3), 203–228 (2000)

    Article  Google Scholar 

  23. Mehrabi, N., Morstatter, F., Saxena, N., Lerman, K., Galstyan, A.: A survey on bias and fairness in machine learning. ACM Compu. Surv. 54(6), 1–35 (2021). https://doi.org/10.1145/3457607

    Article  Google Scholar 

  24. Radovanović, S., Petrović, A., Delibašić, B., Suknović, M.: A fair classifier chain for multi-label bank marketing strategy classification. Int. Trans. Oper. Res. (2021). https://doi.org/10.1111/itor.13059, https://onlinelibrary.wiley.com/doi/pdf/10.1111/itor.13059

  25. Ratanamahatana, C.A., Gunopulos, D.: Scaling up the naive Bayesian classifier: Using decision trees for feature selection. Appl. Artiff. Intell. 17(5), 475–487 (2002)

    Google Scholar 

  26. Redmond, M., Baveja, A.: A data-driven software tool for enabling cooperative information sharing among police departments. Eur. J. Oper. Res. 141(3), 660–678 (2002)

    Article  Google Scholar 

  27. Refaeilzadeh, P., Tang, L., Liu, H.: Cross-Validation, pp. 1–7. Springer, New York (2016). https://doi.org/10.1007/978-1-4899-7993-3_565-2

  28. Rosenfield, G., Fitzpatrick-Lins, K.: A coefficient of agreement as a measure of thematic classification accuracy. Photogram. Eng. Rem. Sen. 52(2), 223–227 (1986). http://pubs.er.usgs.gov/publication/70014667

  29. Sánchez-Morillo, D., López-Gordo, M., León, A.: Novel multiclass classification for home-based diagnosis of sleep apnea hypopnea syndrome. Exp. Syst. Appli. 41(4), 1654–1662 (2014)

    Article  Google Scholar 

  30. Street, W.N., Wolberg, W.H., Mangasarian, O.L.: Nuclear feature extraction for breast tumor diagnosis. In: Biomedical Image Processing and Biomedical Visualization. vol. 1905, pp. 861–870. International Society for Optics and Photonics (1993)

    Google Scholar 

  31. Wolpert, D.H.: What does dinner cost? http://www.no-free-lunch.org/coev.pdf

Download references

Acknowledgments

This work is partially supported by Territori Aperti a project funded by Fondo Territori Lavoro e Conoscenza CGIL CISL UIL, by SoBigData-PlusPlus H2020-INFRAIA-2019-1 EU project, contract number 871042 and by “FAIR-EDU: Promote FAIRness in EDUcation institutions” a project founded by the University of L’Aquila.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giordano d’Aloisio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

d’Aloisio, G., Stilo, G., Di Marco, A., D’Angelo, A. (2022). Enhancing Fairness in Classification Tasks with Multiple Variables: A Data- and Model-Agnostic Approach. In: Boratto, L., Faralli, S., Marras, M., Stilo, G. (eds) Advances in Bias and Fairness in Information Retrieval. BIAS 2022. Communications in Computer and Information Science, vol 1610. Springer, Cham. https://doi.org/10.1007/978-3-031-09316-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-09316-6_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-09315-9

  • Online ISBN: 978-3-031-09316-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics