Skip to main content

Analysis of Biases in Calibrated Recommendations

  • Conference paper
  • First Online:
Advances in Bias and Fairness in Information Retrieval (BIAS 2022)

Abstract

While recommender systems have mainly focused on the effectiveness of their results, beyond-accuracy perspectives have been recently explored. One of the most prominent is algorithmic bias, which analyzes if existing imbalances in the input data are exacerbated in the produced recommendations. On the other hand, calibrated recommendations ensure that the recommendations reflect the distribution of the original preferences of each user (e.g., in terms of item genres). In this paper, we connect these two perspectives, to analyze how the original calibration method deals with the bias in the state-of-the-art recommendation models. Our analysis on real-world data shows that the calibration effectiveness is impacted by how a recommendation model handles bias.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abdollahpouri, H., Mansoury, M., Burke, R., Mobasher, B.: The unfairness of popularity bias in recommendation. arXiv preprint arXiv:1907.13286 (2019)

  2. Anelli, V.W., et al.: Elliot: a comprehensive and rigorous framework for reproducible recommender systems evaluation, pp. 2405–2414. Association for Computing Machinery, New York (2021)

    Google Scholar 

  3. Ariza, A., Fabbri, F., Boratto, L., Salamó, M.: From the beatles to billie eilish: connecting provider representativeness and exposure in session-based recommender systems. In: Hiemstra, D., Moens, M.-F., Mothe, J., Perego, R., Potthast, M., Sebastiani, F. (eds.) ECIR 2021. LNCS, vol. 12657, pp. 201–208. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72240-1_16

    Chapter  Google Scholar 

  4. Bella, A., Ferri, C., Hernández-Orallo, J., Ramírez-Quintana, M.J.: Calibration of machine learning models. In: Handbook of Research on Machine Learning Applications and Trends: Algorithms, Methods, and Techniques, pp. 128–146. IGI Global (2010)

    Google Scholar 

  5. Boratto, L., Fenu, G., Marras, M.: The effect of algorithmic bias on recommender systems for massive open online courses. In: Azzopardi, L., Stein, B., Fuhr, N., Mayr, P., Hauff, C., Hiemstra, D. (eds.) ECIR 2019. LNCS, vol. 11437, pp. 457–472. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-15712-8_30

    Chapter  Google Scholar 

  6. Boratto, L., Fenu, G., Marras, M.: Connecting user and item perspectives in popularity debiasing for collaborative recommendation. Inf. Process. Manag. 58(1), 102387 (2021). https://doi.org/10.1016/j.ipm.2020.102387

    Article  Google Scholar 

  7. Boratto, L., Fenu, G., Marras, M.: Interplay between upsampling and regularization for provider fairness in recommender systems. User Model. User-Adap. Inter. 31(3), 421–455 (2021). https://doi.org/10.1007/s11257-021-09294-8

    Article  Google Scholar 

  8. Boratto, L., Fenu, G., Marras, M., Medda, G.: Consumer fairness in recommender systems: contextualizing definitions and mitigations. CoRR abs/2201.08614 (2022)

    Google Scholar 

  9. Boratto, L., Marras, M.: Hands on data and algorithmic bias in recommender systems. In: Proceedings of the 28th ACM Conference on User Modeling, Adaptation and Personalization, UMAP 2020, pp. 388–389. ACM (2020). https://doi.org/10.1145/3340631.3398669

  10. Boratto, L., Marras, M.: Advances in bias-aware recommendation on the web, pp. 1147–1149. Association for Computing Machinery, New York (2021)

    Google Scholar 

  11. Boratto, L., Marras, M.: Countering bias in personalized rankings: from data engineering to algorithm development. In: 37th IEEE International Conference on Data Engineering, ICDE 2021, pp. 2362–2364. IEEE (2021). https://doi.org/10.1109/ICDE51399.2021.00266

  12. Chen, J., Dong, H., Wang, X., Feng, F., Wang, M., He, X.: Bias and debias in recommender system: a survey and future directions (2021)

    Google Scholar 

  13. Gómez, E., Boratto, L., Salamó, M.: Disparate impact in item recommendation: a case of geographic imbalance. In: Hiemstra, D., Moens, M.-F., Mothe, J., Perego, R., Potthast, M., Sebastiani, F. (eds.) ECIR 2021. LNCS, vol. 12656, pp. 190–206. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72113-8_13

    Chapter  Google Scholar 

  14. Gómez, E., Boratto, L., Salamó, M.: Provider fairness across continents in collaborative recommender systems. Inf. Process. Manag. 59(1), 102719 (2022). https://doi.org/10.1016/j.ipm.2021.102719

    Article  Google Scholar 

  15. Gómez, E., Zhang, C.S., Boratto, L., Salamó, M., Marras, M.: The winner takes it all: geographic imbalance and provider (un)fairness in educational recommender systems. In: SIGIR 2021: The 44th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 1808–1812. ACM (2021). https://doi.org/10.1145/3404835.3463235

  16. Gómez, E., Zhang, C.S., Boratto, L., Salamó, M., Ramos, G.: Enabling cross-continent provider fairness in educational recommender systems. Future Gener. Comput. Syst. 127, 435–447 (2022). https://doi.org/10.1016/j.future.2021.08.025

    Article  Google Scholar 

  17. Kirdemir, B., Kready, J., Mead, E., Hussain, M.N., Agarwal, N.: Examining video recommendation bias on YouTube. In: Boratto, L., Faralli, S., Marras, M., Stilo, G. (eds.) BIAS 2021. CCIS, vol. 1418, pp. 106–116. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-78818-6_10

    Chapter  Google Scholar 

  18. Makhortykh, M., Urman, A., Ulloa, R.: Detecting race and gender bias in visual representation of AI on web search engines. In: Boratto, L., Faralli, S., Marras, M., Stilo, G. (eds.) BIAS 2021. CCIS, vol. 1418, pp. 36–50. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-78818-6_5

    Chapter  Google Scholar 

  19. Marlin, B.: Collaborative filtering: a machine learning perspective. University of Toronto Toronto (2004)

    Google Scholar 

  20. McGinty, L., Reilly, J.: On the evolution of critiquing recommenders. In: Ricci, F., Rokach, L., Shapira, B., Kantor, P.B. (eds.) Recommender Systems Handbook, pp. 419–453. Springer, Boston (2011). https://doi.org/10.1007/978-0-387-85820-3_13

    Chapter  Google Scholar 

  21. Nixon, J., Dusenberry, M.W., Zhang, L., Jerfel, G., Tran, D.: Measuring calibration in deep learning. In: CVPR Workshops, vol. 2 (2019)

    Google Scholar 

  22. Ramos, G., Boratto, L.: Reputation (in)dependence in ranking systems: demographics influence over output disparities. In: Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2020, pp. 2061–2064. ACM (2020). https://doi.org/10.1145/3397271.3401278

  23. Ramos, G., Boratto, L., Marras, M.: Reputation equity in ranking systems. In: CIKM 2021: The 30th ACM International Conference on Information and Knowledge Management, Virtual Event, Queensland, Australia, 1–5 November 2021, pp. 3378–3382. ACM (2021). https://doi.org/10.1145/3459637.3482171

  24. Seymen, S., Abdollahpouri, H., Malthouse, E.C.: A constrained optimization approach for calibrated recommendations. In: Fifteenth ACM Conference on Recommender Systems, pp. 607–612 (2021)

    Google Scholar 

  25. Steck, H.: Calibrated recommendations. In: Proceedings of the 12th ACM Conference on Recommender Systems, RecSys 2018, pp. 154–162. Association for Computing Machinery, New York (2018). https://doi.org/10.1145/3240323.3240372

  26. Zadrozny, B., Elkan, C.: Obtaining calibrated probability estimates from decision trees and Naive Bayesian classifiers. In: ICML, vol. 1, pp. 609–616. Citeseer (2001)

    Google Scholar 

Download references

Acknowledgements

M. Salamó research was partially funded by project NanoMoocs (grant No. COMRDI18-1-0010) from ACCIÓ.

D. Contreras research was partially funded by postdoctoral project (grant No. 74200094) from ANID-Chile.

Powered@NLHPC: This research was partially supported by the supercomputing infrastructure of the NLHPC (ECM-02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Contreras .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rojas, C., Contreras, D., Salamó, M. (2022). Analysis of Biases in Calibrated Recommendations. In: Boratto, L., Faralli, S., Marras, M., Stilo, G. (eds) Advances in Bias and Fairness in Information Retrieval. BIAS 2022. Communications in Computer and Information Science, vol 1610. Springer, Cham. https://doi.org/10.1007/978-3-031-09316-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-09316-6_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-09315-9

  • Online ISBN: 978-3-031-09316-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics