Skip to main content

Hierarchical Deep Multi-task Learning for Classification of Patient Diagnoses

  • Conference paper
  • First Online:
Artificial Intelligence in Medicine (AIME 2022)

Abstract

Recent years have witnessed an increased interest in the biomedical research community in developing machine learning models and methods that can automatically assign diagnostic codes (ICD) to patient stays based on the information in their Electronic Health Records (EHR). However, despite the recent advances, accurate automatic classification of diagnostic codes continues to face challenges, especially for low-prior diagnostic codes. To alleviate the problem, we propose to leverage information in the diagnostic hierarchy and better utilize the dependencies among diseases in this hierarchy. We develop a new hierarchical deep multi-task learning method that learns classification models for multiple diagnostic codes at the different levels of abstraction in the disease hierarchy while allowing the transfer of information from high-level nodes, more general diagnoses codes to the low-level ones, more specific diagnostic codes. After that, we refine the initial hierarchical model by utilizing the relations and information that can discriminate better between competing diseases. Our empirical results show that our new method and its refinement outperform baseline machine learning architectures that do not leverage the hierarchical structure of target diagnoses tasks or disease-disease relationships.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ben-David, S., Schuller, R.: Exploiting task relatedness for multiple task learning. In: Schölkopf, B., Warmuth, M.K. (eds.) COLT-Kernel 2003. LNCS (LNAI), vol. 2777, pp. 567–580. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45167-9_41

    Chapter  MATH  Google Scholar 

  2. Choi, E., et al.: Mime: multilevel medical embedding of electronic health records for predictive healthcare. arXiv preprint arXiv:1810.09593 (2018)

  3. Crawshaw, M.: Multi-task learning with deep neural networks: a survey. arXiv preprint arXiv:2009.09796 (2020)

  4. Fan, J., et al.: HD-MTL: hierarchical deep multi-task learning for large-scale visual recognition. IEEE Trans. Image Process. 26(4), 1923–1938 (2017)

    Article  MathSciNet  Google Scholar 

  5. Han, L., Zhang, Y.: Learning tree structure in multi-task learning. In: Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 397–406. ACM (2015)

    Google Scholar 

  6. Jacob, L., Vert, J.P., Bach, F.R.: Clustered multi-task learning: a convex formulation. In: Advances in Neural Information Processing Systems, pp. 745–752 (2009)

    Google Scholar 

  7. Johnson, A.E., et al.: MIMIC-III, a freely accessible critical care database. Sci. Data 3, 160035 (2016)

    Google Scholar 

  8. Kang, Z., Grauman, K., Sha, F.: Learning with whom to share in multi-task feature learning. In: ICML, vol. 2, p. 4 (2011)

    Google Scholar 

  9. Krishna, K., Toshniwal, S., Livescu, K.: Hierarchical multitask learning for CTC-based speech recognition. arXiv preprint arXiv:1807.06234 (2018)

  10. Lee, G., Yang, E., Hwang, S.: Asymmetric multi-task learning based on task relatedness and loss. In: International Conference on Machine Learning (2016)

    Google Scholar 

  11. Lee, H.B., Yang, E., Hwang, S.J.: Deep asymmetric multi-task feature learning. In: International Conference on Machine Learning, pp. 2956–2964. PMLR (2018)

    Google Scholar 

  12. Lee, J.M., Hauskrecht, M.: Modeling multivariate clinical event time-series with recurrent temporal mechanisms. Artif. Intell. Med. 112 (2021)

    Google Scholar 

  13. Li, Y., et al.: BEHRT: transformer for electronic health records. Sci. Rep. 10(1), 1–12 (2020)

    Article  Google Scholar 

  14. Lipton, Z.C., Kale, D.C., Elkan, C., Wetzel, R.: Learning to diagnose with LSTM recurrent neural networks. arXiv preprint (2015)

    Google Scholar 

  15. Long, M., Cao, Y., Wang, J., Jordan, M.I.: Learning transferable features with deep adaptation networks. arXiv preprint arXiv:1502.02791 (2015)

  16. Lu, Y., Kumar, A., Zhai, S., Cheng, Y., Javidi, T., Feris, R.: Fully-adaptive feature sharing in multi-task networks with applications in person attribute classification. In: IEEE Conference on Computer Vision and Pattern Recognition (2017)

    Google Scholar 

  17. Malakouti, S., Hauskrecht, M.: Hierarchical adaptive multi-task learning framework for patient diagnoses and diagnostic category classification. In: 2019 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). IEEE (2019)

    Google Scholar 

  18. Malakouti, S., Hauskrecht, M.: Predicting patient’s diagnoses and diagnostic categories from clinical-events in EHR data. In: Riaño, D., Wilk, S., ten Teije, A. (eds.) AIME 2019. LNCS (LNAI), vol. 11526, pp. 125–130. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21642-9_17

    Chapter  Google Scholar 

  19. Miotto, R., Li, L., Kidd, B.A., Dudley, J.T.: Deep patient: an unsupervised representation to predict the future of patients from the electronic health records. Sci. Rep. 6, 26094 (2016)

    Article  Google Scholar 

  20. Rajkomar, A., et al.: Scalable and accurate deep learning with electronic health records. NPJ Digit. Med. 1(1), 1–10 (2018)

    Article  Google Scholar 

  21. Rasmy, L., Xiang, Y., Xie, Z., Tao, C., Zhi, D.: Med-BERT: pretrained contextualized embeddings on large-scale structured electronic health records for disease prediction. NPJ Digit. Med. 4(1), 1–13 (2021)

    Article  Google Scholar 

  22. Rosenstein, M.T., Marx, Z., Kaelbling, L.P., Dietterich, T.G.: To transfer or not to transfer. In: NIPS 2005 Workshop on Transfer Learning, vol. 898, pp. 1–4 (2005)

    Google Scholar 

  23. Sanh, V., Wolf, T., Ruder, S.: A hierarchical multi-task approach for learning embeddings from semantic tasks. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 6949–6956 (2019)

    Google Scholar 

  24. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, pp. 5998–6008 (2017)

    Google Scholar 

  25. Zhang, J., Kowsari, K., Harrison, J.H., Lobo, J.M., Barnes, L.E.: Patient2Vec: a personalized interpretable deep representation of the longitudinal electronic health record. IEEE Access 6, 65333–65346 (2018)

    Article  Google Scholar 

  26. Zhang, W., Deng, L., Zhang, L., Wu, D.: Overcoming negative transfer: a survey. arXiv preprint arXiv:2009.00909 (2020)

  27. Zhang, Y., Yang, Q.: A survey on multi-task learning. arXiv preprint arXiv:1707.08114 (2017)

  28. Zweig, A., Weinshall, D.: Hierarchical regularization cascade for joint learning. In: International Conference on Machine Learning, pp. 37–45 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salim Malakouti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Malakouti, S., Hauskrecht, M. (2022). Hierarchical Deep Multi-task Learning for Classification of Patient Diagnoses. In: Michalowski, M., Abidi, S.S.R., Abidi, S. (eds) Artificial Intelligence in Medicine. AIME 2022. Lecture Notes in Computer Science(), vol 13263. Springer, Cham. https://doi.org/10.1007/978-3-031-09342-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-09342-5_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-09341-8

  • Online ISBN: 978-3-031-09342-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics