Skip to main content

DP-CTGAN: Differentially Private Medical Data Generation Using CTGANs

  • Conference paper
  • First Online:
Artificial Intelligence in Medicine (AIME 2022)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13263))

Included in the following conference series:

Abstract

Generative Adversarial Networks (GANs) are an important tool to generate synthetic medical data, in order to combat the limited and difficult access to the real data sets and accelerate the innovation in the healthcare domain. Despite their promising capability, they are vulnerable to various privacy attacks that might reveal information of individuals from the training data. Preserving privacy while keeping the quality of the generated data still remains a challenging problem. We propose DP-CTGAN, which incorporates differential privacy into a conditional tabular generative model. Our experiments demonstrate that our model outperforms existing state-of-the-art models under the same privacy budget on several benchmark data sets. In addition, we combine our method with federated learning, enabling a more secure way of synthetic data generation without the need of uploading locally collected data to a central repository.

M. L. Fang and D. S. Dhami—Equal contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We consider only tabular medical data set generation.

References

  1. Abadi, M., et al.: Deep learning with differential privacy. In: CCS (2016)

    Google Scholar 

  2. Asuncion, A., Newman, D.: UCI machine learning repository (2007)

    Google Scholar 

  3. Aviñó, L., Ruffini, M., Gavaldà, R.: Generating synthetic but plausible healthcare record datasets. arXiv preprint arXiv:1807.01514 (2018)

  4. Buczak, A.L., Babin, S., Moniz, L.: Data-driven approach for creating synthetic electronic medical records. BMC Med. Inform. Decis. Making 10, 1–28 (2010)

    Article  Google Scholar 

  5. Deprez, P., Shevchenko, P.V., Wüthrich, M.V.: Machine learning techniques for mortality modeling. Eur. Actuar. J. 7(2), 337–352 (2017). https://doi.org/10.1007/s13385-017-0152-4

    Article  MathSciNet  MATH  Google Scholar 

  6. Dhami, D.S., Das, M., Natarajan, S.: Beyond simple images: human knowledge-guided GANs for clinical data generation. In: KR (2021)

    Google Scholar 

  7. Dhami, D.S., Kunapuli, G., Das, M., Page, D., Natarajan, S.: Drug-drug interaction discovery: kernel learning from heterogeneous similarities. Smart Health 9, 88–100 (2018)

    Article  Google Scholar 

  8. Dhami, D.S., Soni, A., Page, D., Natarajan, S.: Identifying Parkinson’s patients: a functional gradient boosting approach. In: ten Teije, A., Popow, C., Holmes, J.H., Sacchi, L. (eds.) AIME 2017. LNCS (LNAI), vol. 10259, pp. 332–337. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59758-4_39

    Chapter  Google Scholar 

  9. Dwork, C., Roth, A., et al.: The algorithmic foundations of differential privacy. Found. Trends Theor. Comput. Sci. 9(3–4), 211–407 (2014)

    MathSciNet  MATH  Google Scholar 

  10. Fan, L.: A survey of differentially private generative adversarial networks. In: The AAAI Workshop on Privacy-Preserving Artificial Intelligence (2020)

    Google Scholar 

  11. Frid-Adar, M., Klang, E., Amitai, M., Goldberger, J., Greenspan, H.: Synthetic data augmentation using GAN for improved liver lesion classification. In: ISBI (2018)

    Google Scholar 

  12. Geyer, R.C., Klein, T., Nabi, M.: Differentially private federated learning: a client level perspective. arXiv preprint arXiv:1712.07557 (2017)

  13. Goodfellow, I., et al.: Generative adversarial nets. In: NeurIPS (2014)

    Google Scholar 

  14. Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.: Improved training of Wasserstein GANs. In: NeurIPS (2017)

    Google Scholar 

  15. Havaei, M., et al.: Brain tumor segmentation with deep neural networks. Med. Image Anal. 35, 18–31 (2017)

    Article  Google Scholar 

  16. Jordon, J., Yoon, J., Van Der Schaar, M.: PATE-GAN: generating synthetic data with differential privacy guarantees. In: ICLR (2018)

    Google Scholar 

  17. Konečnỳ, J., McMahan, H.B., Yu, F.X., Richtárik, P., Suresh, A.T., Bacon, D.: Federated learning: strategies for improving communication efficiency. arXiv preprint arXiv:1610.05492 (2016)

  18. Lin, Z., Khetan, A., Fanti, G., Oh, S.: PACGAN: the power of two samples in generative adversarial networks. In: NeurIPS (2018)

    Google Scholar 

  19. Mahmood, F., Chen, R., Durr, N.J.: Unsupervised reverse domain adaptation for synthetic medical images via adversarial training. IEEE T-MI 37, 2572–2581 (2018)

    Google Scholar 

  20. Papernot, N., Abadi, M., Erlingsson, U., Goodfellow, I., Talwar, K.: Semi-supervised knowledge transfer for deep learning from private training data. In: ICLR (2017)

    Google Scholar 

  21. Park, N., Mohammadi, M., Gorde, K., Jajodia, S., Park, H., Kim, Y.: Data synthesis based on generative adversarial networks. VLDB Endow. (2018)

    Google Scholar 

  22. Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep convolutional generative adversarial networks. In: ICLR (2016)

    Google Scholar 

  23. Salihovic, I., Serdarevic, H., Kevric, J.: The role of feature selection in machine learning for detection of spam and phishing attacks. In: Avdaković, S. (ed.) IAT 2018. LNNS, vol. 60, pp. 476–483. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-02577-9_47

    Chapter  Google Scholar 

  24. Shamsuddin, R., Maweu, B.M., Li, M., Prabhakaran, B.: Virtual patient model: an approach for generating synthetic healthcare time series data. In: ICHI (2018)

    Google Scholar 

  25. Tango, F., Botta, M.: Real-time detection system of driver distraction using machine learning. IEEE Trans. Intell. Transp. Syst. 14, 894–905 (2013)

    Article  Google Scholar 

  26. Torfi, A., Fox, E.A.: CorGAN: correlation-capturing convolutional generative adversarial networks for generating synthetic healthcare records. In: FLAIRS (2020)

    Google Scholar 

  27. Tucker, A., Wang, Z., Rotalinti, Y., Myles, P.: Generating high-fidelity synthetic patient data for assessing machine learning healthcare software. NPJ Digit. Med. 3, 1–13 (2020)

    Article  Google Scholar 

  28. Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., Manzagol, P.A., Bottou, L.: Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion. JMLR (2010)

    Google Scholar 

  29. Walonoski, J., et al.: Synthea: an approach, method, and software mechanism for generating synthetic patients and the synthetic electronic health care record. JAMIA 25, 230–238 (2018)

    Google Scholar 

  30. Xie, L., Lin, K., Wang, S., Wang, F., Zhou, J.: Differentially private generative adversarial network. arXiv preprint arXiv:1802.06739 (2018)

  31. Xu, L., Skoularidou, M., Cuesta-Infante, A., Veeramachaneni, K.: Modeling tabular data using conditional GAN. In: NeurIPS (2019)

    Google Scholar 

  32. Zhang, X., Ji, S., Wang, T.: Differentially private releasing via deep generative model (technical report). arXiv preprint arXiv:1801.01594 (2018)

Download references

Acknowledgements

The authors thank the anonymous reviewers for their valuable feedback. This work was supported by the ICT-48 Network of AI Research Excellence Center “TAILOR” (EU Horizon 2020, GA No 952215) and the Nexplore Collaboration Lab “AI in Construction” (AICO). It benefited from “safeFBDC - Financial Big Data Cluster” (FKZ:01MK21002K), funded by the BMWK as part of the GAIA-X initiative, and the HMWK cluster projects “The Third Wave of AI” and “The Adaptive Mind”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Devendra Singh Dhami .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fang, M.L., Dhami, D.S., Kersting, K. (2022). DP-CTGAN: Differentially Private Medical Data Generation Using CTGANs. In: Michalowski, M., Abidi, S.S.R., Abidi, S. (eds) Artificial Intelligence in Medicine. AIME 2022. Lecture Notes in Computer Science(), vol 13263. Springer, Cham. https://doi.org/10.1007/978-3-031-09342-5_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-09342-5_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-09341-8

  • Online ISBN: 978-3-031-09342-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics