Abstract
The Square Coloring of a graph G refers to coloring of vertices of a graph such that any two distinct vertices which are at distance at most two receive different colors. In this paper, we initiate the study of a related coloring problem called the subset square coloring of graphs. Broadly, the subset square coloring of a graph studies the square coloring of a dominating set of a graph using q colors. Here the aim is to optimize the number of colors used. This also generalizes the well-studied Efficient Dominating Set problem. We show that the \(q\)-Subset Square Coloring problem is NP-hard for all values of q even on bipartite graphs. We further study the parameterized complexity of this problem when parameterized by a number of structural parameters. We further show bounds on the number of colors needed to subset square color some graph classes.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Proofs of results that are marked with a star are given in the full version.
References
Bange, D.W.: Efficient dominating sets in graphs. Appl. Discrete Math. 189, 189–199 (1988)
Bertossi, A.A.: Dominating sets for split and bipartite graphs. Inf. Process. Lett. 19(1), 37–40 (1984)
Bodlaender, H.L., Drange, P.G., Dregi, M.S., Fomin, F.V., Lokshtanov, D., Pilipczuk, M.: A c\(\wedge \)kn 5-approximation algorithm for treewidth. SIAM J. Comput. 45(2), 317–378 (2016)
Yuehua, B., Zhu, X.: An optimal square coloring of planar graphs. J. Comb. Optim. 24(4), 580–592 (2012)
Calamoneri, T.: The l (h, k)-labelling problem: a survey and annotated bibliography. Comput. J. 49(5), 585–608 (2006)
Chartrand, G., Zhang, P.: Chromatic Graph Theory. Chapman and Hall/CRC, London (2008)
Coudert, D., Ducoffe, G., Popa, A.: Fully polynomial FPT algorithms for some classes of bounded clique-width graphs. ACM Trans. Algorithms (TALG) 15(3), 1–57 (2019)
Cygan, M., et al.: Parameterized Algorithms, vol. 5. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21275-3
Erickson, L., LaValle, S.M.: A chromatic art gallery problem. Technical report (2010)
Gajarský, J., Lampis, M., Ordyniak, S.: Parameterized algorithms for modular-width. In: Gutin, G., Szeider, S. (eds.) IPEC 2013. LNCS, vol. 8246, pp. 163–176. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-03898-8_15
Ganian, R.: Improving vertex cover as a graph parameter. Discrete Math. Theor. Comput. Sci. 17 (2015)
Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness (Series of Books in the Mathematical Sciences), 1st edn. W. H. Freeman, New York (1979)
Gargano, L., Rescigno, A.A.: Complexity of conflict-free colorings of graphs. Theoret. Comput. Sci. 566, 39–49 (2015)
Golumbic, M.C.: Algorithmic graph theory and perfect graphs (2004)
Griggs, J., Yeh, R.: Labelling graphs with a condition at distance 2. SIAM J. Discrete Math. 5, 586–595 (1992)
Hopcroft, J., Krishnamoorthy, M.: On the harmonious coloring of graphs. SIAM J. Algebraic Discrete Methods 4, 306–311 (1983)
Lokshtanov, D., Misra, N., Philip, G., Ramanujan, M.S., Saurabh, S.: Hardness of r-dominating set on graphs of diameter (r+1). In: Gutin, G., Szeider, S. (eds.) IPEC 2013. LNCS, vol. 8246, pp. 255–267. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-03898-8_22
MacGillivray, G., Seyffarth, K.: Domination numbers of planar graphs. J. Graph Theory 22(3), 213–229 (1996)
Ortiz, C., Villanueva, M.: Maximal independent sets in caterpillar graphs. Discret. Appl. Math. 160(3), 259–266 (2012)
Spinrad, J., Brandstädt, A., Stewart, L.: Bipartite permutation graphs. Discret. Appl. Math. 18(3), 279–292 (1987)
van den Heuvel, J., McGuinness, S.: Coloring the square of a planar graph. J. Graph Theory 42(2), 110–124 (2003)
Wang, Y.L., Lin, T.W., Wang, L.: The local harmonious chromatic problem. In: Proceedings of the 27th Workshop on Combinatorial Mathematices and Computation Theory, Taichung, Taiwan (2010)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 Springer Nature Switzerland AG
About this paper
Cite this paper
Abidha, V.P., Ashok, P., Tomar, A., Yadav, D. (2022). Coloring a Dominating Set Without Conflicts: q-Subset Square Coloring. In: Kulikov, A.S., Raskhodnikova, S. (eds) Computer Science – Theory and Applications. CSR 2022. Lecture Notes in Computer Science, vol 13296. Springer, Cham. https://doi.org/10.1007/978-3-031-09574-0_2
Download citation
DOI: https://doi.org/10.1007/978-3-031-09574-0_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-09573-3
Online ISBN: 978-3-031-09574-0
eBook Packages: Computer ScienceComputer Science (R0)