Skip to main content

Coloring a Dominating Set Without Conflicts: q-Subset Square Coloring

  • Conference paper
  • First Online:
Computer Science – Theory and Applications (CSR 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13296))

Included in the following conference series:

  • 436 Accesses

Abstract

The Square Coloring of a graph G refers to coloring of vertices of a graph such that any two distinct vertices which are at distance at most two receive different colors. In this paper, we initiate the study of a related coloring problem called the subset square coloring of graphs. Broadly, the subset square coloring of a graph studies the square coloring of a dominating set of a graph using q colors. Here the aim is to optimize the number of colors used. This also generalizes the well-studied Efficient Dominating Set problem. We show that the \(q\)-Subset Square Coloring problem is NP-hard for all values of q even on bipartite graphs. We further study the parameterized complexity of this problem when parameterized by a number of structural parameters. We further show bounds on the number of colors needed to subset square color some graph classes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Proofs of results that are marked with a star are given in the full version.

References

  1. Bange, D.W.: Efficient dominating sets in graphs. Appl. Discrete Math. 189, 189–199 (1988)

    MathSciNet  MATH  Google Scholar 

  2. Bertossi, A.A.: Dominating sets for split and bipartite graphs. Inf. Process. Lett. 19(1), 37–40 (1984)

    Article  MathSciNet  Google Scholar 

  3. Bodlaender, H.L., Drange, P.G., Dregi, M.S., Fomin, F.V., Lokshtanov, D., Pilipczuk, M.: A c\(\wedge \)kn 5-approximation algorithm for treewidth. SIAM J. Comput. 45(2), 317–378 (2016)

    Article  MathSciNet  Google Scholar 

  4. Yuehua, B., Zhu, X.: An optimal square coloring of planar graphs. J. Comb. Optim. 24(4), 580–592 (2012)

    Article  MathSciNet  Google Scholar 

  5. Calamoneri, T.: The l (h, k)-labelling problem: a survey and annotated bibliography. Comput. J. 49(5), 585–608 (2006)

    Article  Google Scholar 

  6. Chartrand, G., Zhang, P.: Chromatic Graph Theory. Chapman and Hall/CRC, London (2008)

    MATH  Google Scholar 

  7. Coudert, D., Ducoffe, G., Popa, A.: Fully polynomial FPT algorithms for some classes of bounded clique-width graphs. ACM Trans. Algorithms (TALG) 15(3), 1–57 (2019)

    Article  MathSciNet  Google Scholar 

  8. Cygan, M., et al.: Parameterized Algorithms, vol. 5. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21275-3

    Book  MATH  Google Scholar 

  9. Erickson, L., LaValle, S.M.: A chromatic art gallery problem. Technical report (2010)

    Google Scholar 

  10. Gajarský, J., Lampis, M., Ordyniak, S.: Parameterized algorithms for modular-width. In: Gutin, G., Szeider, S. (eds.) IPEC 2013. LNCS, vol. 8246, pp. 163–176. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-03898-8_15

    Chapter  MATH  Google Scholar 

  11. Ganian, R.: Improving vertex cover as a graph parameter. Discrete Math. Theor. Comput. Sci. 17 (2015)

    Google Scholar 

  12. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness (Series of Books in the Mathematical Sciences), 1st edn. W. H. Freeman, New York (1979)

    Google Scholar 

  13. Gargano, L., Rescigno, A.A.: Complexity of conflict-free colorings of graphs. Theoret. Comput. Sci. 566, 39–49 (2015)

    Article  MathSciNet  Google Scholar 

  14. Golumbic, M.C.: Algorithmic graph theory and perfect graphs (2004)

    Google Scholar 

  15. Griggs, J., Yeh, R.: Labelling graphs with a condition at distance 2. SIAM J. Discrete Math. 5, 586–595 (1992)

    Article  MathSciNet  Google Scholar 

  16. Hopcroft, J., Krishnamoorthy, M.: On the harmonious coloring of graphs. SIAM J. Algebraic Discrete Methods 4, 306–311 (1983)

    Article  MathSciNet  Google Scholar 

  17. Lokshtanov, D., Misra, N., Philip, G., Ramanujan, M.S., Saurabh, S.: Hardness of r-dominating set on graphs of diameter (r+1). In: Gutin, G., Szeider, S. (eds.) IPEC 2013. LNCS, vol. 8246, pp. 255–267. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-03898-8_22

    Chapter  Google Scholar 

  18. MacGillivray, G., Seyffarth, K.: Domination numbers of planar graphs. J. Graph Theory 22(3), 213–229 (1996)

    Article  MathSciNet  Google Scholar 

  19. Ortiz, C., Villanueva, M.: Maximal independent sets in caterpillar graphs. Discret. Appl. Math. 160(3), 259–266 (2012)

    Article  MathSciNet  Google Scholar 

  20. Spinrad, J., Brandstädt, A., Stewart, L.: Bipartite permutation graphs. Discret. Appl. Math. 18(3), 279–292 (1987)

    Article  MathSciNet  Google Scholar 

  21. van den Heuvel, J., McGuinness, S.: Coloring the square of a planar graph. J. Graph Theory 42(2), 110–124 (2003)

    Article  MathSciNet  Google Scholar 

  22. Wang, Y.L., Lin, T.W., Wang, L.: The local harmonious chromatic problem. In: Proceedings of the 27th Workshop on Combinatorial Mathematices and Computation Theory, Taichung, Taiwan (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. P. Abidha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Abidha, V.P., Ashok, P., Tomar, A., Yadav, D. (2022). Coloring a Dominating Set Without Conflicts: q-Subset Square Coloring. In: Kulikov, A.S., Raskhodnikova, S. (eds) Computer Science – Theory and Applications. CSR 2022. Lecture Notes in Computer Science, vol 13296. Springer, Cham. https://doi.org/10.1007/978-3-031-09574-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-09574-0_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-09573-3

  • Online ISBN: 978-3-031-09574-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics