Skip to main content

Cooperative Positioning Enhancement for HDVs and CAVs Coexisting Environment Using Deep Neural Networks

  • Conference paper
  • First Online:
Advances in Swarm Intelligence (ICSI 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13345))

Included in the following conference series:

  • 585 Accesses

Abstract

Accurate vehicle positioning is a key technology affecting traffic safety and travel efficiency. High precision positioning technology combined with the internet of vehicles (IoV) can improve the positioning accuracy of human-driving vehicles (HDVs), which is well suited for practical application requirements and resources saving. In this paper, a positioning error prediction model based on deep neural network (DNN) and positioning information sharing methods are proposed for traffic scenarios where connected and autonomous vehicles (CAVs) and HDVs with different positioning capabilities coexist. The CAVs with high precision positioning capability is utilized to share positioning information for HDVs to enhance the cooperative positioning accuracy of vehicles with different positioning capabilities. Experimental results show the accuracy and timeliness of our proposal for enhancing vehicle positioning accuracy and sharing vehicle positioning information.

This research was supported in part by by the National Key Research and Development Program of China under Grant No. 2018YFB1600500, in part by the National Natural Science Foundation of China under Grant No. 62173012, U20A20155 and 52172339, in part by the Beijing Municipal Natural Science Foundation under Grant No. L191001, in part by the Newton Advanced Fellowship under Grant No. 62061130221, in part by the Project of HuNan Provinicial Science and Technology Department under Grant No. 2020SK2098 and 2020RC4048, in part by the CSUST Project under Grant No. 2019IC11.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Liu, Q., Liang, P., Xia, J., Wang, T., Song, M., Xu, X.: A highly accurate positioning solution for C-V2X systems. Sensors 21(4), 1175 (2021)

    Article  Google Scholar 

  2. Nowak, A.: Dynamic GNSS mission planning using DTM for precise navigation of autonomous vehicles. J. Navig. 70(3), 483C504 (2017)

    Article  Google Scholar 

  3. Chen, S., Hu, J., Shi, Y., Zhao, L., Li, W.: A vision of C-V2X: technologies, field testing, and challenges with chinese development. IEEE Internet Things J. 7(5), 3872–3881 (2020)

    Article  Google Scholar 

  4. Rohani, M., Gingras, D., Gruyer, D.: A novel approach for improved vehicular positioning using cooperative map matching and dynamic base station DGPS concept. IEEE Trans. Intell. Transp. Syst. 17(1), 230–239 (2016)

    Article  Google Scholar 

  5. Humphreys, T., Murrian, M.J., Narula, L.: Deep-urban unaided precise global navigation satellite system vehicle positioning. IEEE Intell. Trans. Syst. Mag. PP(99), XX1 (2020)

    Google Scholar 

  6. Suhr, J.K., Jang, J., Min, D., Jung, H.G.: Sensor fusion-based low-cost vehicle localization system for complex urban environments. IEEE Trans. Intell. Trans. Syst. 18(5), 1078–1086 (2017)

    Article  Google Scholar 

  7. Javanmardi, E., Javanmardi, M., Gu, Y., Kamijo, S.: Autonomous vehicle self-localization based on multilayer 2D vector map and multi-channel LiDAR. In: 2017 IEEE Intelligent Vehicles Symposium (IV). IEEE (2017)

    Google Scholar 

  8. Ansari, K.: Cooperative position prediction: beyond vehicle-to-vehicle relative positioning. IEEE Trans. Intell. Transp. Syst. 21(3), 1–10 (2019)

    Google Scholar 

  9. Peng, B., Seco-Granados, G., Steinmetz, E., Frohle, M., Wymeersch, H.: Decentralized scheduling for cooperative localization with deep reinforcement learning. IEEE Trans. Vehi. Technol. PP(5), 1 (2019)

    Google Scholar 

  10. El-Sheimy, N., Chiang, K.W., Noureldin, A.: The utilization of artificial neural networks for multisensor system integration in navigation and positioning instruments. IEEE Trans. Instrum. Meas. 55(5), 1606–1615 (2006)

    Article  Google Scholar 

  11. Grewal, M.S., Weill, L.R., Andrews, A.P.: Global Positioning Systems, Inertial Navigation, and Integration. Wiley Interdisciplinary Reviews Computational Statistics (2007)

    Google Scholar 

  12. Skog, I., Handel, P.: In-car positioning and navigation technologies-a survey. IEEE Trans. Intel. Transp. Syst. 10(1), 4–21 (2009). https://doi.org/10.1109/TITS.2008.2011712

    Article  Google Scholar 

  13. Wei, Z., Peng, G., Li, C., Chen, Y., Zhang, Z.: A new deep learning model for fault diagnosis with good anti-noise and domain adaptation ability on raw vibration signals. Sensors 17(3), 425 (2017)

    Google Scholar 

  14. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org

  15. Hagan, M.T., Demuth, H.B., Beale, M.H., De Jesús, O.: Neural Network Design. Martin Hagan, Cambridge (2014)

    Google Scholar 

  16. Colyar, J., Halkias, J.: US highway 101 dataset. Federal Highway Administration (FHWA), Technical report FHWA-HRT-07-030 (2007)

    Google Scholar 

  17. Nam, S., Lee, D., Lee, J., Park, S.: CNVPS: cooperative neighboring vehicle positioning system based on vehicle-to-vehicle communication. IEEE Access 7, 16847–16857 (2019). https://doi.org/10.1109/ACCESS.2019.2894906

    Article  Google Scholar 

  18. Soatti, G., Nicoli, M., Garcia, N., Denis, B., Raulefs, R., Wymeersch, H.: Implicit cooperative positioning in vehicular networks. IEEE Trans. Intell. Trans. Syst. PP(99), 1–17 (2017)

    Google Scholar 

  19. Bottou, L.: Stochastic gradient descent tricks. In: Montavon, G., Orr, G.B., Müller, K.-R. (eds.) Neural Networks: Tricks of the Trade. LNCS, vol. 7700, pp. 421–436. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-35289-8_25

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haiying Xia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, A. et al. (2022). Cooperative Positioning Enhancement for HDVs and CAVs Coexisting Environment Using Deep Neural Networks. In: Tan, Y., Shi, Y., Niu, B. (eds) Advances in Swarm Intelligence. ICSI 2022. Lecture Notes in Computer Science, vol 13345. Springer, Cham. https://doi.org/10.1007/978-3-031-09726-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-09726-3_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-09725-6

  • Online ISBN: 978-3-031-09726-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics