Skip to main content

Feature Selection for EEG Data Classification with Weka

  • Conference paper
  • First Online:
Advances in Swarm Intelligence (ICSI 2022)

Abstract

The paper explores the application of feature selection techniques for the brain activity classifying patterns task. The study aim is to compare the machine learning algorithms results depending on the chosen feature selection technique. As an example for analysis, the task of classifying of open-eyes and closed-eyes resting states according to EEG data was chosen. For the experiment, EEG records of the resting states from the data set “EEG Motor Movement/Imagery” were used. Features in the time and frequency domains for 19 electrodes corresponding to the 10–20 system were extracted from the EEG records presented in the EDF format. Python was used to form the feature matrix and convert it to ARFF format. The resulting dataset contains 209 features for classification and a target feature. In the experimental part of the work, the classification results are compared before and after feature selection. The experiment examined 10 Weka attribute evaluators.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bird, J.J., Manso, L.J., Ribeiro, E.P., Ekárt, A., Faria, D.R.: A study on mental state classification using EEG-based brain-machine interface. In: 2018 International Conference on Intelligent Systems (IS), pp. 795–800 (2018)

    Google Scholar 

  2. Edla, D.R., Mangalorekar, K., Dhavalikar, G., Dodia, S.: Classification of EEG data for human mental state analysis using random forest classifier. Procedia Comput. Sci. 132, 1523–1532 (2018)

    Article  Google Scholar 

  3. Gupta, A., Agrawal, R.K.: Relevant feature selection from EEG signal for mental task classification. In: Tan, P.-N., Chawla, S., Ho, C.K., Bailey, J. (eds.) PAKDD 2012. LNCS (LNAI), vol. 7302, pp. 431–442. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-30220-6_36

    Chapter  Google Scholar 

  4. Timofeeva, A.Y., Murtazina, M.S.: Feature selection for EEG data based on logistic regression. In: 2021 XV International Scientific-Technical Conference on Actual Problems of Electronic Instrument Engineering (APEIE), pp. 604–609 (2021)

    Google Scholar 

  5. Becerra-Sánchez, P., Reyes-Munoz, A., Guerrero-Ibañez, A.: Feature selection model based on EEG signals for assessing the cognitive workload in drivers. Sensors 20, 5881 (2020)

    Article  Google Scholar 

  6. Deligani, R.J., Borgheai, S.B., McLinden, J., Shahriari, Y.: Multimodal fusion of EEG-fNIRS: a mutual information-based hybrid classification framework. Biomed. Opt. Express 12, 1635–1650 (2021)

    Article  Google Scholar 

  7. Zhang, Y., Cheng, C., Chen, T.: Multi-channel physiological signal emotion recognition based on ReliefF feature selection. In: 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS), pp. 725–730 (2019)

    Google Scholar 

  8. Escudero, J., Ifeachor, E., Fernández, A., López-Ibor, J.J., Hornero, R.: Changes in the MEG background activity in patients with positive symptoms of schizophrenia: spectral analysis and impact of age. Physiol. Meas. 34(2), 265–279 (2013)

    Article  Google Scholar 

  9. Ghaderi, A., Frounchi, J., Farnam, A.: Machine learning-based signal processing using physiological signals for stress detection. In: 2015 22nd Iranian Conference on Biomedical Engineering (ICBME), pp. 93–98 (2015)

    Google Scholar 

  10. Zhou, Z., Li, P., Liu, J., Dong, W.: A novel real-time EEG based eye state recognition system. In: Liu, X., Cheng, D., Jinfeng, L. (eds.) ChinaCom 2018. LNICSSITE, vol. 262, pp. 175–183. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-06161-6_17

    Chapter  Google Scholar 

  11. Uwisengeyimana, J.D., AlSalihy, N.K., Ibrikci, T.: Statistical performance effect of feature selection techniques on eye state prediction using EEG. Int. J. Stat. Med. Res. 5, 224–230 (2016)

    Article  Google Scholar 

  12. Teplan, M.: Fundamentals of EEG measurement. Meas. Sci. Rev. 2(2), 1–11 (2002)

    Google Scholar 

  13. Klem, G., Lüders, H., Jasper, H., Elger, C.: The ten-twenty electrode system of the International federation. The international federation of clinical neurophysiology. Electroencephalogr. Clin. Neurophysiol. Suppl. 52, 3–6 (1999)

    Google Scholar 

  14. Mazher, M., Faye, I., Qayyum, A., Malik, A.S.: Classification of resting and cognitive states using EEG-based feature extraction and connectivity approach. In: 2018 IEEE-EMBS Conference on Biomedical Engineering and Sciences (IECBES), pp. 184–188 (2018)

    Google Scholar 

  15. Murtazina, M., Avdeenko, T.: Applying classification algorithms to identify brain activity patterns. In: Tan, Y., Shi, Y. (eds.) ICSI 2021. LNCS, vol. 12690, pp. 452–461. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-78811-7_42

    Chapter  Google Scholar 

  16. Hag, A., et al.: Enhancing EEG-based mental stress state recognition using an improved hybrid feature selection algorithm. Sensors 21, 8370 (2021)

    Article  Google Scholar 

  17. Jiang, K., Tang, J., Wang, Y., Qiu, C., Zhang, Y., Lin, C.: EEG feature selection via stacked deep embedded regression with joint sparsity. Front. Neurosci. 14, 829 (2020)

    Article  Google Scholar 

  18. Kumar, C.A., Sooraj, M.P., Ramakrishnan, S.: A comparative performance evaluation of supervised feature selection algorithms on microarray datasets. Procedia Comput. Sci. 115, 209–217 (2017)

    Article  Google Scholar 

  19. Schalk, G., et al.: BCI2000: A general-purpose Brain-Computer Interface (BCI) system. IEEE Trans. Biomed. Eng. 51(6), 1034–1043 (2004)

    Article  Google Scholar 

  20. Goldberger, A., et al.: PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation 101(23), e215–e220 (2000)

    Article  Google Scholar 

  21. Bouckaert, R.R., et al.: WEKA manual for version 3-8-3. University of Waikato, Hamilton (2018)

    Google Scholar 

Download references

Acknowledgment

The research is supported by Ministry of Science and Higher Education of Russian Federation (project No. FSUN-2020–0009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marina Murtazina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Murtazina, M., Avdeenko, T. (2022). Feature Selection for EEG Data Classification with Weka. In: Tan, Y., Shi, Y., Niu, B. (eds) Advances in Swarm Intelligence. ICSI 2022. Lecture Notes in Computer Science, vol 13345. Springer, Cham. https://doi.org/10.1007/978-3-031-09726-3_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-09726-3_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-09725-6

  • Online ISBN: 978-3-031-09726-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics