Skip to main content

Multi-Objective Optimization Robot Navigation Through a Graph-Driven PSO Mechanism

  • Conference paper
  • First Online:
Advances in Swarm Intelligence (ICSI 2022)

Abstract

In real-world robot applications such as service robots, mining mobile robots, and rescue robots, an autonomous mobile robot is required to visit multiple waypoints that it achieves multiple-objective optimizations. Such multiple-objective optimizations include robot travelling distance minimization, time minimization, turning minimization, etc. In this paper, a particle swarm optimization (PSO) algorithm incorporated with a Generalized Voronoi diagram (GVD) method is proposed for a robot to reach multiple waypoints with minimized total distance. Firstly, a GVD is used to form a Voronoi diagram in an obstacle populated environment to construct safety-conscious routes. Secondly, the sequence of multiple waypoints is created by the PSO algorithm to minimize the total travel cost. Thirdly, while the robot attempts to visit multiple waypoints, it traverses along the edges of the GVD to form a collision-free trajectory. The regional path locally from waypoints to nearest nodes or edges needs to be created to join the trajectory. A Node Selection Algorithm (NSA) is developed in this paper to implement such a protocol to build up regional path from waypoints to nearest nodes or edges on GVD. Finally, a histogram-based local reactive navigator is adopted for moving obstacle avoidance. Simulation and comparison studies validate the effectiveness and robustness of the proposed model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Al-Khatib, R.M., et al.: MGA-TSP: modernised genetic algorithm for the travelling salesman problem. Int. J. Reason.-Based Intell. Syst. 11(3), 215–226 (2019)

    Google Scholar 

  2. Brunch, M.H., Gilbreath, G., Muelhauser, J., Lum, J.: Accurate waypoint navigation using non-differential GPS. Technical report, Space and Naval Warfare Systems Center, San Diego, CA (2002)

    Google Scholar 

  3. Chen, J., Luo, C., Krishnan, M., Paulik, M., Tang, Y.: An enhanced dynamic Delaunay triangulation-based path planning algorithm for autonomous mobile robot navigation. In: Intelligent Robots and Computer Vision XXVII: Algorithms and Techniques, vol. 7539, pp. 253–264. SPIE (2010)

    Google Scholar 

  4. Jayaraman, E., Lei, T., Rahimi, S., Cheng, S., Luo, C.: Immune system algorithms to environmental exploration of robot navigation and mapping. In: Tan, Y., Shi, Y. (eds.) ICSI 2021. LNCS, vol. 12690, pp. 73–84. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-78811-7_7

    Chapter  Google Scholar 

  5. Lei, T., Luo, C., Ball, J.E., Rahimi, S.: A graph-based ant-like approach to optimal path planning. In: 2020 IEEE Congress on Evolutionary Computation (CEC), pp. 1–6. IEEE (2020)

    Google Scholar 

  6. Lei, T., Luo, C., Jan, G.E., Bi, Z.: Deep learning-based complete coverage path planning with re-joint and obstacle fusion paradigm. Front. Robot. AI 9, 843816 (2022). https://doi.org/10.3389/frobt.2022.843816

  7. Lei, T., Luo, C., Jan, G.E., Fung, K.: Variable speed robot navigation by an ACO approach. In: International Conference on Swarm Intelligence, pp. 232–242 (2019)

    Google Scholar 

  8. Lei, T., Luo, C., Sellers, T., Rahimi, S.: A bat-pigeon algorithm to crack detection-enabled autonomous vehicle navigation and mapping. Intell. Syst. Appl. 12, 200053 (2021)

    Google Scholar 

  9. Lei, T., Luo, C., Sellers, T., Wang, Y., Liu, L.: Multi-task allocation framework with spatial dislocation collision avoidance for multiple aerial robots. IEEE Trans. Aerosp. Electron. Syst. (2022). https://doi.org/10.1109/TAES.2022.3167652

  10. Lei, T., Sellers, T., Rahimi, S., Cheng, S., Luo, C.: A nature-inspired algorithm to adaptively safe navigation of a Covid-19 disinfection robot. In: Liu, X.-J., Nie, Z., Yu, J., Xie, F., Song, R. (eds.) ICIRA 2021. LNCS (LNAI), vol. 13015, pp. 123–134. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-89134-3_12

    Chapter  Google Scholar 

  11. Li, X., Luo, C., Xu, Y., Li, P.: A fuzzy PID controller applied in AGV control system. In: International Conference on Advanced Robotics and Mechatronics (ICARM), pp. 555–560 (2016)

    Google Scholar 

  12. Liu, L., Luo, C., Shen, F.: Multi-agent formation control with target tracking and navigation. In: IEEE International Conference on Information and Automation (ICIA), pp. 98–103 (2017)

    Google Scholar 

  13. Luo, C., Anjos, M.F., Vannelli, A.: Large-scale fixed-outline floorplanning design using convex optimization techniques. In: 2008 Asia and South Pacific Design Automation Conference, pp. 198–203. IEEE (2008)

    Google Scholar 

  14. Luo, C., Yang, S.X.: A bioinspired neural network for real-time concurrent map building and complete coverage robot navigation in unknown environments. IEEE Trans. Neural Netw. 19(7), 1279–1298 (2008)

    Article  Google Scholar 

  15. Luo, C., Yang, S.X., Krishnan, M., Paulik, M.: An effective vector-driven biologically-motivated neural network algorithm to real-time autonomous robot navigation. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 4094–4099 (2014)

    Google Scholar 

  16. Luo, C., Yang, S.X., Li, X., Meng, M.Q.-H.: Neural-dynamics-driven complete area coverage navigation through cooperation of multiple mobile robots. IEEE Trans. Ind. Electron. 64(1), 750–760 (2016)

    Article  Google Scholar 

  17. Nakamura, R., Kobayashi, K.: A remote control system for waypoint navigation based mobile robot using JAUS. In: 2018 57th Annual Conference of the Society of Instrument and Control Engineers of Japan (SICE), pp. 1751–1756. IEEE (2018)

    Google Scholar 

  18. Sangeetha, V., et al.: A fuzzy gain-based dynamic ant colony optimization for path planning in dynamic environments. Symmetry 13(2), 280 (2021)

    Article  Google Scholar 

  19. Shao, M., Lee, J.Y.: Development of autonomous navigation method for nonholonomic mobile robots based on the generalized Voronoi diagram. In: Internation Conference on Control, Automation and Systems, pp. 309–313 (2010)

    Google Scholar 

  20. Shi, Y., Eberhart, R.: A modified particle swarm optimizer. In: 1998 IEEE International Conference on Evolutionary Computation Proceedings, pp. 69–73 (1998)

    Google Scholar 

  21. Shin, Y., Kim, E.: Hybrid path planning using positioning risk and artificial potential fields. Aerosp. Sci. Technol. 112, 106–640 (2021)

    Article  Google Scholar 

  22. Torpelund-Bruin, C., Lee, I.: Generalized Voronoi diagrams with obstacles for use in geospatial market analysis and strategy decisions. In: 2008 International Workshop on Geoscience and Remote Sensing, vol. 2, pp. 287–290 (2008)

    Google Scholar 

  23. Ulrich, I., Borenstein, J.: VFH+: reliable obstacle avoidance for fast mobile robots. In: Proceedings. In: 1998 IEEE International Conference on Robotics and Automation, vol. 2, pp. 1572–1577 (1998)

    Google Scholar 

  24. Wang, J., Li, B., Meng, M.Q.H.: Kinematic constrained bi-directional RRT with efficient branch pruning for robot path planning. Expert Syst. Appl. 170, 114541 (2021)

    Article  Google Scholar 

  25. Wang, L., Luo, C., Li, M., Cai, J.: Trajectory planning of an autonomous mobile robot by evolving ant colony system. Int. J. Robot. Autom. 32(4), 406–413 (2017)

    Google Scholar 

  26. Yang, Y., Deng, Q., Shen, F., Zhao, J., Luo, C.: A shapelet learning method for time series classification. In: IEEE 28th International Conference on Tools with Artificial Intelligence (ICTAI), pp. 423–430 (2016)

    Google Scholar 

  27. Zhang, B., Jin, W., Gao, X., Chen, W.: A multi-goal global dynamic path planning method for indoor mobile robot. In: 2021 3rd International Symposium on Robotics Intelligent Manufacturing Technology (ISRIMT), pp. 97–103 (2021)

    Google Scholar 

  28. Zhao, W., et al.: A privacy-aware Kinect-based system for healthcare professionals. In: IEEE International Conference on Electro Information Technology (EIT), pp. 0205–0210 (2016)

    Google Scholar 

  29. Zhao, W., et al.: LiftingDoneRight: a privacy-aware human motion tracking system for healthcare professionals. Int. J. Handheld Comput. Res. (IJHCR) 7(3), 1–15 (2016)

    Article  Google Scholar 

  30. Zhu, D., Tian, C., Jiang, X., Luo, C.: Multi-AUVs cooperative complete coverage path planning based on GBNN algorithm. In: 29th Chinese Control and Decision Conference (CCDC), pp. 6761–6766 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chaomin Luo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sellers, T., Lei, T., Jan, G.E., Wang, Y., Luo, C. (2022). Multi-Objective Optimization Robot Navigation Through a Graph-Driven PSO Mechanism. In: Tan, Y., Shi, Y., Niu, B. (eds) Advances in Swarm Intelligence. ICSI 2022. Lecture Notes in Computer Science, vol 13345. Springer, Cham. https://doi.org/10.1007/978-3-031-09726-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-09726-3_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-09725-6

  • Online ISBN: 978-3-031-09726-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics