Abstract
Register automata are an expressive model of computation using finite memory. Conformance checking of their properties can be reduced to \(\textsc {NonEmptiness}\) tests, however, this problem is \(\mathsf {PSPACE}\)-complete. Existing approaches usually employ symbolic state exploration. This results in state explosion for most complex register automata. We propose a semantics-preserving transformation of register automata into a representation in which reachability of states is equivalent to reachability of locations, i.e., is in \(\mathsf {NL}\). We evaluate the algorithm on random-generated and real-world automata and show that it avoids state explosion and performs better on most instances than a comparable existing approach. This yields a practical approach to conformance checking of register automata.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Aarts, F., Heidarian, F., Kuppens, H., Olsen, P., Vaandrager, F.: Automata learning through counterexample guided abstraction refinement. In: Giannakopoulou, D., Méry, D. (eds.) FM 2012. LNCS, vol. 7436, pp. 10–27. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32759-9_4
Aarts, F., Jonsson, B., Uijen, J.: Generating models of infinite-state communication protocols using regular inference with abstraction. In: Petrenko, A., Simão, A., Maldonado, J.C. (eds.) ICTSS 2010. LNCS, vol. 6435, pp. 188–204. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16573-3_14
Aarts, F., Schmaltz, J., Vaandrager, F.: Inference and abstraction of the biometric passport. In: Margaria, T., Steffen, B. (eds.) ISoLA 2010. LNCS, vol. 6415, pp. 673–686. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16558-0_54
Bartlett, K.A., Scantlebury, R.A., Wilkinson, P.T.: A note on reliable full-duplex transmission over half-duplex links. Commun. ACM 12(5), 260–261 (1969). https://doi.org/10.1145/362946.362970
Boigelot, B.: Symbolic methods for exploring infinite state spaces. Ph.D. thesis, Université de Liège, Liège, Belgium, May 1998. https://hdl.handle.net/2268/74874
Bojańczyk, M., Klin, B., Lasota, S.: Automata theory in nominal sets. Log. Methods Comput. Sci. 10(4), 1–44 (2014). https://doi.org/10.2168/LMCS-10(3:4)2014
Brütsch, B., Landwehr, P., Thomas, W.: \(\mathbb{N}\)-memory automata over the alphabet \(\mathbb{N}\). In: Drewes, F., MartÃn-Vide, C., Truthe, B. (eds.) LATA 2017. LNCS, vol. 10168, pp. 91–102. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-53733-7_6
Cassel, S., Howar, F., Jonsson, B.: RALib: a LearnLib extension for inferring EFSMs. In: Proceedings of the 4th International Workshop on Design and Implementation of Formal Tools and Systems (2015). https://www.faculty.ece.vt.edu/chaowang/difts2015/papers/paper_5.pdf
Cassel, S., Howar, F., Jonsson, B., Merten, M., Steffen, B.: A succinct canonical register automaton model. In: Bultan, T., Hsiung, P.-A. (eds.) ATVA 2011. LNCS, vol. 6996, pp. 366–380. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24372-1_26
Cassel, S., Jonsson, B., Howar, F., Steffen, B.: A succinct canonical register automaton model for data domains with binary relations. In: Chakraborty, S., Mukund, M. (eds.) ATVA 2012. LNCS, pp. 57–71. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33386-6_6
Chen, Y.F., Lengál, O., Tan, T., Wu, Z.: Register automata with linear arithmetic. In: 2017 32nd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), pp. 1–12. IEEE, June 2017. https://doi.org/10.1109/LICS.2017.8005111
Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: All-Pairs Shortest Paths, chap. 25, 3rd edn. pp. 684–707. MIT Press, Cambridge, February 2009
Czyba, C., Spinrath, C., Thomas, W.: Finite automata over infinite alphabets: two models with transitions for local change. In: Potapov, I. (ed.) DLT 2015. LNCS, vol. 9168, pp. 203–214. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21500-6_16
D’Antoni, L., Ferreira, T., Sammartino, M., Silva, A.: Symbolic register automata. In: Dillig, I., Tasiran, S. (eds.) CAV 2019. LNCS, vol. 11561, pp. 3–21. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25540-4_1
Demri, S., Lazić, R.: LTL with the freeze quantifier and register automata. ACM Trans. Comput. Log. 10(3), 16:1–16:30 (2009). https://doi.org/10.1145/1507244.1507246
Dierl, S., Howar, F.: A taxonomy and reductions for common register automata formalisms. In: Olderog, E.-R., Steffen, B., Yi, W. (eds.) Model Checking, Synthesis, and Learning. LNCS, vol. 13030, pp. 186–218. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-91384-7_10
Dierl, S., Howar, F.: Reach on register automata via history independence - replication artifact (2022). https://doi.org/10.5281/zenodo.6367981
Garhewal, B., Vaandrager, F., Howar, F., Schrijvers, T., Lenaerts, T., Smits, R.: Grey-box learning of register automata. In: Dongol, B., Troubitsyna, E. (eds.) IFM 2020. LNCS, vol. 12546, pp. 22–40. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-63461-2_2
Granas, A., Dugundji, J.: Elementary fixed point theorems, chap. 2, pp. 9–84. Springer, New York (2003). https://doi.org/10.1007/978-0-387-21593-8_2
Hoare, C.A.R.: An axiomatic basis for computer programming. Commun. ACM 12(10), 576–580 (1969). https://doi.org/10.1145/363235.363259
Howar, F., Jabbour, F., Mues, M.: JConstraints: a library for working with logic expressions in java. In: Margaria, T., Graf, S., Larsen, K.G. (eds.) Models, Mindsets, Meta: The What, the How, and the Why Not? LNCS, vol. 11200, pp. 310–325. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-22348-9_19
International Civil Aviation Organization: Machine readable travel documents. Doc 9303, International Civil Aviation Organization, Montréal, Québec, Canada (2021). https://www.icao.int/publications/pages/publication.aspx?docnum=9303
Iosif, R., Xu, X.: Abstraction refinement for emptiness checking of alternating data automata. In: Beyer, D., Huisman, M. (eds.) TACAS 2018. LNCS, vol. 10806, pp. 93–111. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-89963-3_6
Kaminski, M., Francez, N.: Finite-memory automata. Theor. Comput. Sci. 134(2), 329–363 (1994). https://doi.org/10.1016/0304-3975(94)90242-9
Madelaine, E., Qin, X., Zhang, M., Bliudze, S.: Using SMT engine to generate symbolic automata. Electron. Commun. EASST 76 (2019). https://doi.org/10.14279/tuj.eceasst.76.1103
Minsky, M.L.: Computation: Finite and infinite machines. Prentice-Hall International, London (1972)
Moerman, J., Sammartino, M.: Residual nominal automata. In: Konnov, I., Kovács, L. (eds.) 31st International Conference on Concurrency Theory. LIPIcs, vol. 171, pp. 44:1–44:21. Schloss Dagstuhl-Leibniz-Zentrum für Informatik, Dagstuhl, Germany (2020). https://doi.org/10.4230/LIPIcs.CONCUR.2020.44
de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78800-3_24
Murawski, A.S., Ramsay, S.J., Tzevelekos, N.: Reachability in pushdown register automata. In: Csuhaj-Varjú, E., Dietzfelbinger, M., Ésik, Z. (eds.) MFCS 2014. LNCS, vol. 8634, pp. 464–473. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44522-8_39
Murawski, A.S., Ramsay, S.J., Tzevelekos, N.: Reachability in pushdown register automata. J. Comput. Syst. Sci 87, 58–83 (2017). https://doi.org/10.1016/j.jcss.2017.02.008
Neider, D., Smetsers, R., Vaandrager, F., Kuppens, H.: Benchmarks for automata learning and conformance testing. In: Margaria, T., Graf, S., Larsen, K.G. (eds.) Models, Mindsets, Meta: The What, the How, and the Why Not? LNCS, vol. 11200, pp. 390–416. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-22348-9_23
Pressman, I., Singmaster, D.: The jealous husbands and the missionaries and cannibals. Math. Gaz. 73(464), 73–81 (1989). https://doi.org/10.2307/3619658
Qin, X., Bliudze, S., Madelaine, E., Hou, Z., Deng, Y., Zhang, M.: SMT-based generation of symbolic automata. Acta Inform. 57(3), 627–656 (2020). https://doi.org/10.1007/s00236-020-00367-6
Rosenberg, J., et al.: SIP: Session initiation protocol. RFC 3261, RFC Editor, June 2002. https://doi.org/10.17487/RFC3261
Saint-Andre, P.: Extensible messaging and presence protocol (XMPP): Core. RFC 6120, RFC Editor, March 2011. https://doi.org/10.17487/RFC6120
Sakamoto, H., Ikeda, D.: Intractability of decision problems for finite-memory automata. Theor. Comput. Sci. 231(2), 297–308 (2000). https://doi.org/10.1016/S0304-3975(99)00105-X
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Dierl, S., Howar, F. (2022). \(\textsc {Reach}\) on Register Automata via History Independence. In: Kovács, L., Meinke, K. (eds) Tests and Proofs. TAP 2022. Lecture Notes in Computer Science, vol 13361. Springer, Cham. https://doi.org/10.1007/978-3-031-09827-7_2
Download citation
DOI: https://doi.org/10.1007/978-3-031-09827-7_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-09826-0
Online ISBN: 978-3-031-09827-7
eBook Packages: Computer ScienceComputer Science (R0)