Skip to main content

Decidability of Resilience for Well-Structured Graph Transformation Systems

  • Conference paper
  • First Online:
Graph Transformation (ICGT 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13349))

Included in the following conference series:

Abstract

Resilience is a concept of rising interest in computer science and software engineering. For systems in which correctness w.r.t. a safety condition is unachievable, fast recovery is demanded. We ask whether we can reach a safe state in a bounded number of steps whenever we reach a bad state. In a well-structured framework, we investigate problems of this kind where the bad and safety conditions are given as upward/downward-closed sets. We obtain decidability results for graph transformation systems by applying our results for subclasses of well-structured transition systems. Moreover, we identify sufficient criteria of graph transformation systems for the applicability of our results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    If \(\mathrm {SAFE}\in \mathcal {J}\setminus \mathcal {I}\), our method provides only the answer whether there is a bound k.

  2. 2.

    In [12], “lossy rules” w.r.t. the minor order, i.e., edge contraction rules, are considered in order to obtain well-structuredness for GTSs.

  3. 3.

    The symbol “+” denotes the disjoint union of graphs.

References

  1. Abdulla, P.A., Cerans, K., Jonsson, B., Tsay, Y.K.: General decidability theorems for infinite-state systems. In: Proceedings of the LICS 1996, pp. 313–321. IEEE (1996). https://doi.org/10.1109/LICS.1996.561359

  2. Apt, K.R., Olderog, E.: Verification of Sequential and Concurrent Programs. Texts and Monographs in Computer Science. Springer, Heidelberg (1991). https://doi.org/10.1007/978-1-4757-4376-0

    Book  MATH  Google Scholar 

  3. Bertrand, N., Delzanno, G., König, B., Sangnier, A., Stückrath, J.: On the decidability status of reachability and coverability in graph transformation systems. In: 23rd International Conference on Rewriting Techniques and Applications (RTA 2012). LIPIcs, vol. 15, pp. 101–116 (2012). https://doi.org/10.4230/LIPIcs.RTA.2012.101

  4. Ding, G.: Subgraphs and well-quasi-ordering. J. Graph Theory 16(5), 489–502 (1992). https://doi.org/10.1002/jgt.3190160509

    Article  MathSciNet  MATH  Google Scholar 

  5. Dufourd, C., Finkel, A., Schnoebelen, P.: Reset nets between decidability and undecidability. In: Larsen, K.G., Skyum, S., Winskel, G. (eds.) ICALP 1998. LNCS, vol. 1443, pp. 103–115. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0055044

    Chapter  MATH  Google Scholar 

  6. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph Transformation. Monographs in Theoretical Computer Science. An EATCS Series, Springer, Heidelberg (2006). https://doi.org/10.1007/3-540-31188-2

    Book  MATH  Google Scholar 

  7. Ehrig, H., et al.: Algebraic approaches to graph transformation - part II: single pushout approach and comparison with double pushout approach. In: Handbook of Graph Grammars and Computing by Graph Transformations, Volume 1: Foundations, pp. 247–312. World Scientific (1997). https://doi.org/10.1142/9789812384720_0004

  8. Esparza, J., Nielsen, M.: Decidability issues for petri nets. BRICS Rep. Ser. 1(8) (1994). https://doi.org/10.7146/brics.v1i8.21662

  9. Finkel, A., Schnoebelen, P.: Well-structured transition systems everywhere! Theor. Comput. Sci. 256(1–2), 63–92 (2001). https://doi.org/10.1016/S0304-3975(00)00102-X

    Article  MathSciNet  MATH  Google Scholar 

  10. Habel, A., Pennemann, K.: Correctness of high-level transformation systems relative to nested conditions. Math. Struct. Comput. Sci. 19(2), 245–296 (2009). https://doi.org/10.1017/S0960129508007202

    Article  MathSciNet  MATH  Google Scholar 

  11. Jackson, S., Ferris, T.L.J.: Resilience principles for engineered systems. Syst. Eng. 16, 152–164 (2013). https://doi.org/10.1002/sys.21228

    Article  Google Scholar 

  12. König, B., Stückrath, J.: Well-structured graph transformation systems. Inf. Comput. 252, 71–94 (2017). https://doi.org/10.1016/j.ic.2016.03.005

    Article  MathSciNet  MATH  Google Scholar 

  13. Özkan, O.: Decidability of resilience for well-structured graph transformation systems. Technical report, Department of Computing Science, University of Oldenburg (2022). https://uol.de/fs/publikationen#c352844

  14. Özkan, O., Würdemann, N.: Resilience of well-structured graph transformation systems. In: Proceedings of 12th International Workshop on Graph Computational Models. EPTCS, vol. 350, pp. 69–88 (2021). https://doi.org/10.4204/EPTCS.350.5

  15. Poskitt, C.M., Plump, D.: Hoare-style verification of graph programs. Fundam. Informaticae 118(1–2), 135–175 (2012). https://doi.org/10.3233/FI-2012-708

    Article  MathSciNet  MATH  Google Scholar 

  16. Rensink, A.: Representing first-order logic using graphs. In: Ehrig, H., Engels, G., Parisi-Presicce, F., Rozenberg, G. (eds.) ICGT 2004. LNCS, vol. 3256, pp. 319–335. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30203-2_23

    Chapter  Google Scholar 

  17. Trivedi, K.S., Kim, D.S., Ghosh, R.: Resilience in computer systems and networks. In: Proceedings of the ICCAD 2009, pp. 74–77. IEEE/ACM (2009). https://doi.org/10.1145/1687399.1687415

Download references

Acknowledgment

I am grateful to Annegret Habel, Nick Würdemann, and the anonymous reviewers for their helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Okan Özkan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Özkan, O. (2022). Decidability of Resilience for Well-Structured Graph Transformation Systems. In: Behr, N., Strüber, D. (eds) Graph Transformation. ICGT 2022. Lecture Notes in Computer Science, vol 13349. Springer, Cham. https://doi.org/10.1007/978-3-031-09843-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-09843-7_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-09842-0

  • Online ISBN: 978-3-031-09843-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics