Skip to main content

FAIRification of Citizen Science Data

  • Conference paper
  • First Online:
Web Engineering (ICWE 2022)

Abstract

Citizen Science (CS) initiatives encourage citizens to collect local data, contributing to knowledge creation and scientific development. However, these CS initiatives do not follow metadata nor data-sharing standards, which hampers their discoverability and reusability out of the scope of them. To improve this scenario in CS is crucial to consider Findable, Accessible, Interoperable and Reusable (FAIR) guidelines for research data sharing. This work proposes a FAIRification process (i.e. making CS initiatives more FAIR compliant), enhancing data sharing capacities in the CS context. It will be considered the adoption of Web standards, Web application programming interfaces (APIs) and Web augmentation. This approach contributes to the production of FAIR data in CS for data consumers. As preliminary results this paper explains the FAIRification process. The research objectives and plan are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://www.w3.org/TR/vocab-dcat-3/.

  2. 2.

    https://core.citizenscience.org/.

  3. 3.

    https://data.vlaanderen.be/shacl-validator/.

References

  1. Albertoni, R., et al.: Data catalog vocabulary (DCAT)-version 2. World Wide Web Consortium (2020)

    Google Scholar 

  2. Baker, B.: Frontiers of citizen science: explosive growth in low-cost technologies engage the public in research. Bioscience 66(11), 921–927 (2016)

    Article  Google Scholar 

  3. Bowser, A., et al.: Still in need of norms: the state of the data in citizen science. Citizen Sci. Theory Pract. 5(1) (2020)

    Google Scholar 

  4. Clark, J.S., Porath, S., Thiele, J., Jobe, M.: Action Research. New Prairie Press, New York (2020)

    Google Scholar 

  5. Cooper, C.B., Rasmussen, L.M., Jones, E.D.: Perspective: the power (dynamics) of open data in citizen science. Front. Clim. 3, 57 (2021)

    Article  Google Scholar 

  6. De Pourcq, K., Ceccaroni, L.: On the importance of data standards in citizen science| COST action CA15212. Citizen Science Cost Action (2018)

    Google Scholar 

  7. Färber, M., Lamprecht, D.: The data set knowledge graph: creating a linked open data source for data sets. Quant. Sci. Stud., 1–30 (2021)

    Google Scholar 

  8. González-Mora, C., Garrigós, I., Casteleyn, S., Firmenich, S.: A web augmentation framework for accessibility based on voice interaction. In: Bielikova, M., Mikkonen, T., Pautasso, C. (eds.) ICWE 2020. LNCS, vol. 12128, pp. 547–550. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-50578-3_42

    Chapter  Google Scholar 

  9. González-Mora, C., Garrigós, I., Zubcoff, J., Mazón, J.N.: Model-based generation of web application programming interfaces to access open data. J. Web Eng. 19, 194–217 (2020)

    Google Scholar 

  10. Haklay, M.M., Dörler, D., Heigl, F., Manzoni, M., Hecker, S., Vohland, K.: What is citizen science? The challenges of definition. In: The Science of Citizen Science, p. 13 (2021)

    Google Scholar 

  11. Liu, H.Y., Dörler, D., Heigl, F., Grossberndt, S.: Citizen science platforms. In: The Science of Citizen Science, p. 439 (2021)

    Google Scholar 

  12. Perelló, J., et al.: The recent past and possible futures of citizen science: final remarks. In: The Science of Citizen Science, p. 517 (2021)

    Google Scholar 

  13. Robinson, L.D., Cawthray, J.L., West, S.E., Bonn, A., Ansine, J.: Ten principles of citizen science. In: Citizen Science: Innovation in Open Science, Society and Policy, pp. 27–40 (2018)

    Google Scholar 

  14. Shwe, K.M.: Study on the data management of citizen science: from the data life cycle perspective. Data Inf. Manage. 4(4), 279–296 (2020)

    Google Scholar 

  15. Tompkins, V.T., Honick, B.J., Polley, K.L., Qin, J.: MetaFAIR: a metadata application profile for managing research data. Proc. Assoc. Inf. Sci. Technol. 58(1), 337–345 (2021)

    Article  Google Scholar 

  16. Wilkinson, M.D., et al.: The fair guiding principles for scientific data management and stewardship. Sci. Data 3(1), 1–9 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This research work has been partially funded by the Proyecto Habana 2021.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reynaldo Alvarez Luna .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Luna, R.A., Zubcoff, J., Garrigós, I., Gonz, H. (2022). FAIRification of Citizen Science Data. In: Di Noia, T., Ko, IY., Schedl, M., Ardito, C. (eds) Web Engineering. ICWE 2022. Lecture Notes in Computer Science, vol 13362. Springer, Cham. https://doi.org/10.1007/978-3-031-09917-5_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-09917-5_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-09916-8

  • Online ISBN: 978-3-031-09917-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics