Skip to main content

Task Bundle Delegation for Reducing the Flowtime

  • Conference paper
  • First Online:
Agents and Artificial Intelligence (ICAART 2021)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13251))

Included in the following conference series:

Abstract

In this paper, we study the problem of task reallocation for load-balancing in distributed data processing models that tackle vast amount of data. We propose a strategy based on cooperative agents used to optimize the rescheduling of tasks in multiple jobs which must be executed as soon as possible. It allows agents to determine locally the next tasks to process, to delegate, possibly to swap according to their knowledge, their own belief base and their peer modelling. The novelty lies in the ability of agents to identify opportunities and bottleneck agents, and afterwards to reassign some bundles of tasks thanks to concurrent bilateral negotiations. The strategy adopted by the agents allows to warrant a continuous improvement of the flowtime. Our experimentation reveals that our strategy reaches a flowtime which is better than the one reached by a DCOP resolution, close to the one reached by the classical heuristic approach, and significantly reduces the rescheduling time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://gitlab.univ-lille.fr/maxime.morge/smastaplus/-/tree/master/doc/specification.

References

  1. Baert, Q., Caron, A.C., Morge, M., Routier, J.C., Stathis, K.: An adaptive multi-agent system for task reallocation in a MapReduce job. J. Parallel Distrib. Comput. 153, 75–88 (2021). https://doi.org/10.1016/j.jpdc.2021.03.008

    Article  Google Scholar 

  2. Beauprez, E., Caron, A.C., Morge, M., Routier, J.C.: A multi-agent negotiation strategy for reducing the flowtime. In: Proceedings of 13th International Conference on Agents and Artificial Intelligence (ICAART), vol. 1, pp. 58–68, February 2021

    Google Scholar 

  3. Beauprez, E., Morge, M.: Scala implementation of the extended multi-agents situated task allocation (2020). https://gitlab.univ-lille.fr/maxime.morge/smastaplus

  4. Beynier, A., Charpillet, F., Szer, D., Mouaddib, A.I.: DEC-MDP / DEC-POMDP. In: Olivier Buffet, O.S. (ed.) Markov Decision Processes in Artificial Intelligence, pp. 277–313. Wiley-ISTE (2010)

    Google Scholar 

  5. Bruno, J., Coffman, E.G., Jr., Sethi, R.: Scheduling independent tasks to reduce mean finishing time. Commun. ACM 17(7), 382–387 (1974)

    Article  MathSciNet  Google Scholar 

  6. Chen, B., Potts, C.N., Woeginger, G.J.: A review of machine scheduling: complexity, algorithms and approximability. In: Du, D.Z., Pardalos, P.M. (eds.) Handbook of Combinatorial Optimization, pp. 1493–1641. Springer, Boston (1998). https://doi.org/10.1007/978-1-4613-0303-9_25

    Chapter  Google Scholar 

  7. Choi, H.L., Brunet, L., How, J.P.: Consensus-based decentralized auctions for robust task allocation. IEEE Trans. Rob. 25(4), 912–926 (2009)

    Article  Google Scholar 

  8. Conway, R., Maxwell, W., Miller, L.: Theory of Scheduling. Addison- Wesley, Reading (1967)

    MATH  Google Scholar 

  9. Fioretto, F., Pontelli, E., Yeoh, W.: Distributed constraint optimization problems and applications: a survey. J. Artif. Intell. Res. 61, 623–698 (2018)

    Article  MathSciNet  Google Scholar 

  10. Fulgham, B., Gouy, I.: The Computer Language Benchmarks Game (2021). https://benchmarksgame-team.pages.debian.net/benchmarksgame/index.html

  11. Horn, W.: Minimizing average flow time with parallel machines. Oper. Res. 21(3), 846–847 (1973)

    Article  Google Scholar 

  12. Jiang, Y.: A survey of task allocation and load balancing in distributed systems. IEEE Trans. Parallel Distrib. Syst. 27(2), 585–599 (2016)

    Article  Google Scholar 

  13. Kuhn, H.W.: The Hungarian method for the assignment problem. Naval Res. Logistics Q. 2(1–2), 83–97 (1955)

    Article  MathSciNet  Google Scholar 

  14. Lesser, V., et al.: Evolution of the GPGP/TAEMS domain-independent coordination framework. Auton. Agent. Multi-Agent Syst. 9(1–2), 87–143 (2004)

    Article  Google Scholar 

  15. Li, S., Negenborn, R.R., Lodewijks, G.: A distributed constraint optimization approach for vessel rotation planning. In: González-Ramírez, R.G., Schulte, F., Voß, S., Ceroni Díaz, J.A. (eds.) ICCL 2014. LNCS, vol. 8760, pp. 61–80. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11421-7_5

    Chapter  Google Scholar 

  16. Lightbend: Akka is the implementation of the actor model on the JVM (2020). http://akka.io

  17. Maheswaran, R.T., Pearce, J.P., Tambe, M.: Distributed algorithms for DCOP: a graphical-game-based approach. In: Bader, D.A., Khokhar, A.A. (eds.) Proceedings of the ISCA 17th International Conference on Parallel and Distributed Computing Systems, The Canterbury Hotel, San Francisco, California, USA, 15–17 September 2004, pp. 432–439. ISCA (2004)

    Google Scholar 

  18. Rubinstein, A.: Perfect equilibrium in a bargaining model. Econometrica 50(1), 97–102 (1982)

    Article  MathSciNet  Google Scholar 

  19. Rust, P., Picard, G.: pyDCOP is a python library for Distributed Constraints Optimization (2021). https://github.com/Orange-OpenSource/pyDcop

  20. Schaerf, A., Shoham, Y., Tennenholtz, M.: Adaptive load balancing: a study in multi-agent learning. J. Artif. Intell. Res. 2, 475–500 (1995)

    Article  Google Scholar 

  21. Shehory, O., Kraus, S.: Methods for task allocation via agent coalition formation. Artif. Intell. 101(1–2), 165–200 (1998)

    Article  MathSciNet  Google Scholar 

  22. Turner, J., Meng, Q., Schaefer, G., Soltoggio, A.: Distributed strategy adaptation with a prediction function in multi-agent task allocation. In: Proceedings of the 17th International Conference on Autonomous Agents and MultiAgent Systems (AAMAS), pp. 739–747 (2018)

    Google Scholar 

  23. Wellman, M.P.: A market-oriented programming environment and its application to distributed multicommodity flow problems. J. Artif. Intell. Res. 1, 1–23 (1993)

    Article  Google Scholar 

  24. Zaharia, M., et al.: Resilient distributed datasets: a fault-tolerant abstraction for in-memory cluster computing. In: Proceedings of the 9th USENIX Symposium on Networked Systems Design and Implementation (NSDI), San Jose, CA, USA, pp. 15–28 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ellie Beauprez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Beauprez, E., Caron, A.C., Morge, M., Routier, JC. (2022). Task Bundle Delegation for Reducing the Flowtime. In: Rocha, A.P., Steels, L., van den Herik, J. (eds) Agents and Artificial Intelligence. ICAART 2021. Lecture Notes in Computer Science(), vol 13251. Springer, Cham. https://doi.org/10.1007/978-3-031-10161-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-10161-8_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-10160-1

  • Online ISBN: 978-3-031-10161-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics