Abstract
Citations are generally analyzed using only quantitative measures while excluding qualitative aspects such as sentiment and intent. However, qualitative aspects provide deeper insights into the impact of a scientific research artifact and make it possible to focus on relevant literature free from bias associated with quantitative aspects. Therefore, it is possible to rank and categorize papers based on their sentiment and intent. For this purpose, larger citation sentiment datasets are required. However, from a time and cost perspective, curating a large citation sentiment dataset is a challenging task. Particularly, citation sentiment analysis suffers from both data scarcity and tremendous costs for dataset annotation. To overcome the bottleneck of data scarcity in the citation analysis domain we explore the impact of out-domain data during training to enhance the model performance. Our results emphasize the use of different scheduling methods based on the use case. We empirically found that a model trained using sequential data scheduling is more suitable for domain-specific usecases. Conversely, shuffled data feeding achieves better performance on a cross-domain task. Based on our findings, we propose an end-to-end trainable multi-task model that covers the sentiment and intent analysis that utilizes out-domain datasets to overcome the data scarcity.
D. Mercier, S. T. R. Rizvi and V. Rajashekar—Equal Contribution.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Twitter US Airline Sentiment: https://www.kaggle.com/crowdflower/twitter-airline-sentiment.
- 2.
Sentiment140: https://www.kaggle.com/kazanova/sentiment140.
- 3.
- 4.
References
Abu-Jbara, A., Ezra, J., Radev, D.: Purpose and polarity of citation: towards NLP-based bibliometrics. In: Proceedings of the 2013 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp. 596–606. Association for Computational Linguistics, Atlanta, June 2013. https://www.aclweb.org/anthology/N13-1067
Athar, A.: Sentiment analysis of citations using sentence structure-based features. In: Proceedings of the ACL 2011 Student Session, pp. 81–87. Association for Computational Linguistics, Portland, June 2011. https://www.aclweb.org/anthology/P11-3015
Bahrainian, S.A., Dengel, A.: Sentiment analysis and summarization of Twitter data. In: 2013 IEEE 16th International Conference on Computational Science and Engineering, pp. 227–234. IEEE (2013)
Beltagy, I., Lo, K., Cohan, A.: SciBERT: a pretrained language model for scientific text. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 3606–3611 (2019)
Bornmann, L., Daniel, H.D.: What do we know about the h index? J. Am. Soc. Inform. Sci. Technol. 58(9), 1381–1385 (2007)
Cliche, M.: BB_twtr at SemEval-2017 task 4: Twitter sentiment analysis with CNNs and LSTMs. In: Proceedings of the 11th International Workshop on Semantic Evaluation (SemEval-2017), pp. 573–580. Association for Computational Linguistics, Vancouver, August 2017. https://doi.org/10.18653/v1/S17-2094, https://www.aclweb.org/anthology/S17-2094
Cohan, A., Ammar, W., van Zuylen, M., Cady, F.: Structural scaffolds for citation intent classification in scientific publications. arXiv preprint arXiv:1904.01608 (2019)
Dai, Z., Yang, Z., Yang, Y., Carbonell, J., Le, Q.V., Salakhutdinov, R.: Transformer-XL: attentive language models beyond a fixed-length context. arXiv preprint arXiv:1901.02860 (2019)
Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018)
Esuli, A., Sebastiani, F.: Determining term subjectivity and term orientation for opinion mining. In: 11th Conference of the European Chapter of the Association for Computational Linguistics (2006)
Feldman, R.: Techniques and applications for sentiment analysis. Commun. ACM 56(4), 82–89 (2013)
Garfield, E.: Is citation analysis a legitimate evaluation tool? Scientometrics 1(4), 359–375 (1979)
Khayrallah, H., Thompson, B., Duh, K., Koehn, P.: Regularized training objective for continued training for domain adaptation in neural machine translation. In: Proceedings of the 2nd Workshop on Neural Machine Translation and Generation, pp. 36–44 (2018)
Lan, Z., Chen, M., Goodman, S., Gimpel, K., Sharma, P., Soricut, R.: ALBERT: a lite bert for self-supervised learning of language representations. arXiv preprint arXiv:1909.11942 (2019)
Li, Y., Baldwin, T., Cohn, T.: What’s in a domain? Learning domain-robust text representations using adversarial training. arXiv preprint arXiv:1805.06088 (2018)
Lin, C., He, Y.: Joint sentiment/topic model for sentiment analysis. In: Proceedings of the 18th ACM Conference on Information and Knowledge Management, pp. 375–384 (2009)
Maas, A.L., Daly, R.E., Pham, P.T., Huang, D., Ng, A.Y., Potts, C.: Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies, pp. 142–150. Association for Computational Linguistics, Portland, June 2011. http://www.aclweb.org/anthology/P11-1015
McAuley, J., Targett, C., Shi, Q., Van Den Hengel, A.: Image-based recommendations on styles and substitutes. In: Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 43–52 (2015)
Medhat, W., Hassan, A., Korashy, H.: Sentiment analysis algorithms and applications: a survey. Ain Shams Eng. J. 5(4), 1093–1113 (2014)
Mercier, D., Bhardwaj, A., Dengel, A., Ahmed, S.: SentiCite: an approach for publication sentiment analysis. arXiv preprint arXiv:1910.03498 (2019)
Mercier, D., Rizvi, S.T.R., Rajashekar, V., Dengel, A., Ahmed, S.: ImpactCite: an XLNet-based solution enabling qualitative citation impact analysis utilizing sentiment and intent. In: Proceedings of the 13th International Conference on Agents and Artificial Intelligence - Volume 2: ICAART, pp. 159–168. INSTICC, SciTePress (2021). https://doi.org/10.5220/0010235201590168
Mrkšić, N., et al.: Multi-domain dialog state tracking using recurrent neural networks. arXiv preprint arXiv:1506.07190 (2015)
Munikar, M., Shakya, S., Shrestha, A.: Fine-grained sentiment classification using BERT. In: 2019 Artificial Intelligence for Transforming Business and Society (AITB), vol. 1, pp. 1–5 (2019)
Pang, B., Lee, L.: A sentimental education: sentiment analysis using subjectivity. In: Proceedings of ACL, pp. 271–278 (2004)
Ranjan, H., Agarwal, S., Prakash, A., Saha, S.K.: Automatic labelling of important terms and phrases from medical discussions. In: 2017 Conference on Information and Communication Technology (CICT), pp. 1–5. IEEE (2017)
Sajjad, H., Durrani, N., Dalvi, F., Belinkov, Y., Vogel, S.: Neural machine translation training in a multi-domain scenario. arXiv preprint arXiv:1708.08712 (2017)
Snow, R., O’connor, B., Jurafsky, D., Ng, A.Y.: Cheap and fast-but is it good? Evaluating non-expert annotations for natural language tasks. In: Proceedings of the 2008 Conference on Empirical Methods in Natural Language Processing, pp. 254–263 (2008)
Socher, R., et al.: Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, pp. 1631–1642 (2013)
Su, D., et al.: Generalizing question answering system with pre-trained language model fine-tuning. In: Proceedings of the 2nd Workshop on Machine Reading for Question Answering, pp. 203–211 (2019)
Tang, D., Wei, F., Yang, N., Zhou, M., Liu, T., Qin, B.: Learning sentiment-specific word embedding for twitter sentiment classification. In: Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 1555–1565 (2014)
Thongtan, T., Phienthrakul, T.: Sentiment classification using document embeddings trained with cosine similarity. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics: Student Research Workshop, pp. 407–414. Association for Computational Linguistics, Florence, July 2019. https://doi.org/10.18653/v1/P19-2057, https://www.aclweb.org/anthology/P19-2057
Wu, Z., Rao, Y., Li, X., Li, J., Xie, H., Wang, F.L.: Sentiment detection of short text via probabilistic topic modeling. In: Liu, A., Ishikawa, Y., Qian, T., Nutanong, S., Cheema, M.A. (eds.) DASFAA 2015. LNCS, vol. 9052, pp. 76–85. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-22324-7_7
Xie, Q., Dai, Z., Hovy, E.H., Luong, M., Le, Q.V.: Unsupervised data augmentation. CoRR abs/1904.12848 (2019). http://arxiv.org/abs/1904.12848
Xu, J., Zhang, Y., Wu, Y., Wang, J., Dong, X., Xu, H.: Citation sentiment analysis in clinical trial papers. In: AMIA Annual Symposium Proceedings, vol. 2015, p. 1334. American Medical Informatics Association (2015)
Yang, Z., Dai, Z., Yang, Y., Carbonell, J., Salakhutdinov, R.R., Le, Q.V.: XLNet: generalized autoregressive pretraining for language understanding. In: Advances in Neural Information Processing Systems, pp. 5754–5764 (2019)
Yousif, A., Niu, Z., Tarus, J.K., Ahmad, A.: A survey on sentiment analysis of scientific citations. Artif. Intell. Rev. 52(3), 1805–1838 (2017). https://doi.org/10.1007/s10462-017-9597-8
Zhou, P., et al.: Attention-based bidirectional long short-term memory networks for relation classification. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (volume 2: Short Papers), pp. 207–212 (2016)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 Springer Nature Switzerland AG
About this paper
Cite this paper
Mercier, D., Rizvi, S.T.R., Rajashekar, V., Ahmed, S., Dengel, A. (2022). Utilizing Out-Domain Datasets to Enhance Multi-task Citation Analysis. In: Rocha, A.P., Steels, L., van den Herik, J. (eds) Agents and Artificial Intelligence. ICAART 2021. Lecture Notes in Computer Science(), vol 13251. Springer, Cham. https://doi.org/10.1007/978-3-031-10161-8_6
Download citation
DOI: https://doi.org/10.1007/978-3-031-10161-8_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-10160-1
Online ISBN: 978-3-031-10161-8
eBook Packages: Computer ScienceComputer Science (R0)