Skip to main content

AllSynth: Transiently Correct Network Update Synthesis Accounting for Operator Preferences

  • Conference paper
  • First Online:
Theoretical Aspects of Software Engineering (TASE 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13299))

Included in the following conference series:

Abstract

The increasingly stringent dependability requirements on communication networks as well as the need to render these networks more adaptive to improve performance, demand for more automated approaches to operate networks. We present AllSynth, a symbolic synthesis tool for updating communication networks in a provably correct and efficient manner. AllSynth automatically synthesizes network update schedules which transiently ensure a wide range of policy properties (expressed in the LTL logic), also during the reconfiguration process. In particular, in contrast to existing approaches, AllSynth symbolically computes and compactly represents all feasible solutions. At its heart, AllSynth relies on a novel, two-level and parameterized use of BDDs which greatly improves performance. Indeed, AllSynth not only provides formal correctness guarantees and outperforms existing state-of-the-art tools in terms of generality, but often also in terms of runtime as documented by experiments on a benchmark of real-world network topologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In this running example, we shall for simplicity assume that routing configurations are total functions, e.g. that the variables \(z_{v}^d\) are true.

  2. 2.

    Recall that \(\mathbf {z}\) consists of variables \(\mathbf {z}_{v_1},\ldots ,\mathbf {z}_{v_k}\) and \(z^d_{v_1},\ldots ,z^d_{v_k}\).

  3. 3.

    Note that \(\mathtt {zij}\) in the figure is to be read as the variable \(z_i^j\).

References

  1. dd python package (2021). https://github.com/tulip-control/dd

  2. Akhoondian Amiri, S., Dudycz, S., Schmid, S., Wiederrecht, S.: Congestion-free rerouting of flows on DAGs. In: 45th International Colloquium on Automata, Languages, and Programming (ICALP), vol. 107, pp. 143:1–143:13. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2018)

    Google Scholar 

  3. Anderson, C.J., et al.: NetKAT: semantic foundations for networks. ACM SIGPLAN Notices 49(1), 113–126 (2014)

    Article  Google Scholar 

  4. Avin, C., Ghobadi, M., Griner, C., Schmid, S.: On the complexity of traffic traces and implications. In: Proceedings of the ACM SIGMETRICS (2020)

    Google Scholar 

  5. Beckett, R., Mahajan, R., Millstein, T., Padhye, J., Walker, D.: Don’t mind the gap: bridging network-wide objectives and device-level configurations. In: Proceedings of the 2016 ACM SIGCOMM Conference, pp. 328–341 (2016)

    Google Scholar 

  6. Benson, T., Akella, A., Maltz, D.A.: Network traffic characteristics of data centers in the wild. In: Proceedings of the 10th ACM SIGCOMM Conference on Internet Measurement, pp. 267–280 (2010)

    Google Scholar 

  7. Brain, M.N., Davenport, J.H., Griggio, A.: Benchmarking solvers, SAT-style. In: Proceedings of the 2nd International Workshop on Satisfiability Checking and Symbolic Computation co-located with the 42nd International Symposium on Symbolic and Algebraic Computation (ISSAC 2017). CEUR, vol. 1974, pp. 1–15. CEUR-WS.org (2017)

    Google Scholar 

  8. Brandt, S., Förster, K.T., Wattenhofer, R.: On consistent migration of flows in SDNs. In: IEEE INFOCOM 2016-The 35th Annual IEEE International Conference on Computer Communications, pp. 1–9. IEEE (2016)

    Google Scholar 

  9. Bryant: Graph-based algorithms for boolean function manipulation. IEEE Trans. Comput. C3-5(8), 677–691 (1986). https://doi.org/10.1109/TC.1986.1676819

  10. Canini, M., Kuznetsov, P., Levin, D., Schmid, S.: A distributed and robust SDN control plane for transactional network updates. In: 2015 IEEE Conference on Computer Communications (INFOCOM), pp. 190–198. IEEE (2015)

    Google Scholar 

  11. Černý, P., Foster, N., Jagnik, N., McClurg, J.: Optimal consistent network updates in polynomial time. In: Gavoille, C., Ilcinkas, D. (eds.) DISC 2016. LNCS, vol. 9888, pp. 114–128. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53426-7_9

    Chapter  Google Scholar 

  12. Chirgwin, R.: Google routing blunder sent Japan’s internet dark on friday (2017). https://www.theregister.co.uk/2017/08/27/google_routing_blunder_sent_japans_internet_dark/

  13. Cimatti, A., Clarke, E.M., Giunchiglia, F., Roveri, M.: NUSMV: a new symbolic model checker. Int. J. Softw. Tools Technol. Transf. 2(4), 410–425 (2000). https://doi.org/10.1007/s100090050046

    Article  MATH  Google Scholar 

  14. Dudycz, S., Ludwig, A., Schmid, S.: Can’t touch this: consistent network updates for multiple policies. In: 2016 46th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN), pp. 133–143. IEEE (2016)

    Google Scholar 

  15. Duluth News Tribune: Human error to blame in minnesota 911 outage (2018). https://www.ems1.com/911/articles/389343048-Officials-Human-error-to-blame-in-Minn-911-outage/

  16. El-Hassany, A., Tsankov, P., Vanbever, L., Vechev, M.: Netcomplete: practical network-wide configuration synthesis with autocompletion. In: 15th \(\{\)USENIX\(\}\) Symposium on Networked Systems Design and Implementation (\(\{\)NSDI\(\}\) 2018), pp. 579–594 (2018)

    Google Scholar 

  17. Feamster, N., Rexford, J.: Why (and how) networks should run themselves. arXiv report (2017)

    Google Scholar 

  18. Finkbeiner, B., Gieseking, M., Hecking-Harbusch, J., Olderog, E.R.: Model checking data flows in concurrent network updates (full version). arXiv preprint arXiv:1907.11061 (2019)

  19. Foerster, K., Schmid, S., Vissicchio, S.: Survey of consistent software-defined network updates. IEEE Commun. Surv. Tutor. 21(2), 1435–1461 (2019)

    Article  Google Scholar 

  20. Foerster, K.T.: On the consistent migration of unsplittable flows: upper and lower complexity bounds. In: 2017 IEEE 16th International Symposium on Network Computing and Applications (NCA), pp. 1–4. IEEE (2017)

    Google Scholar 

  21. Foerster, K.T., Luedi, T., Seidel, J., Wattenhofer, R.: Local checkability, no strings attached:(a) cyclicity, reachability, loop free updates in SDNs. Theoret. Comput. Sci. 709, 48–63 (2018)

    Article  MathSciNet  Google Scholar 

  22. Giacomo, G.D., Vardi, M.Y.: Linear temporal logic and linear dynamic logic on finite traces. In: Proceedings of the 23rd International Joint Conference on Artificial Intelligence (IJCAI 2013), pp. 854–860. AAAI Press (2013)

    Google Scholar 

  23. Glavind, M., Christensen, N., Srba, J., Schmid, S.: Latte: improving the latency of transiently consistent network update schedules. In: Proceedings of 38th International Symposium on Computer Performance, Modeling, Measurements and Evaluation (PERFORMANCE) (2020)

    Google Scholar 

  24. Heller, B., et al.: Leveraging SDN layering to systematically troubleshoot networks. In: Proceedings of the Second ACM SIGCOMM Workshop on Hot Topics in Software Defined Networking, pp. 37–42 (2013)

    Google Scholar 

  25. Jin, X., et al.: Dynamic scheduling of network updates. In: ACM SIGCOMM Computer Communication Review, vol. 44, no. 4, pp. 539–550. ACM (2014)

    Google Scholar 

  26. Kazemian, P., Chang, M., Zeng, H., Varghese, G., McKeown, N., Whyte, S.: Real time network policy checking using header space analysis. In: Presented as part of the 10th USENIX Symposium on Networked Systems Design and Implementation (NSDI 2013), pp. 99–111 (2013)

    Google Scholar 

  27. Kazemian, P., Varghese, G., McKeown, N.: Header space analysis: static checking for networks. In: Presented as part of the 9th \(\{\)USENIX\(\}\) Symposium on Networked Systems Design and Implementation (\(\{\)NSDI\(\}\) 2012), pp. 113–126 (2012)

    Google Scholar 

  28. Kellerer, W., Kalmbach, P., Blenk, A., Basta, A., Reisslein, M., Schmid, S.: Adaptable and data-driven softwarized networks: review, opportunities, and challenges. In: Proceedings of the IEEE (PIEEE) (2019)

    Google Scholar 

  29. Knight, S., Nguyen, H.X., Falkner, N., Bowden, R.A., Roughan, M.: The internet topology zoo. IEEE J. Sel. Areas Commun. 29(9), 1765–1775 (2011). https://doi.org/10.1109/JSAC.2011.111002

    Article  Google Scholar 

  30. Kreutz, D., Ramos, F.M., Verissimo, P.E., Rothenberg, C.E., Azodolmolky, S., Uhlig, S.: Software-defined networking: a comprehensive survey. Proc. IEEE 103(1), 14–76 (2014)

    Article  Google Scholar 

  31. Larsen, K., Mariegaard, A., Schmid, S., Srba, J.: Reproducibility package for: the hazard value: a quantitative network connectivy measure accounting for failures, March 2022. https://doi.org/10.5281/zenodo.6534948

  32. Lee, C.Y.: Representation of switching circuits by binary-decision programs. The Bell Syst. Tech. J. 38(4), 985–999 (1959). https://doi.org/10.1002/j.1538-7305.1959.tb01585.x

    Article  MathSciNet  Google Scholar 

  33. Liu, H.H., Wu, X., Zhang, M., Yuan, L., Wattenhofer, R., Maltz, D.: zUpdate: updating data center networks with zero loss. In: ACM SIGCOMM Computer Communication Review, vol. 43, no. 4, pp. 411–422. ACM (2013)

    Google Scholar 

  34. Ludwig, A., Dudycz, S., Rost, M., Schmid, S.: Transiently secure network updates. ACM SIGMETRICS Perform. Eval. Rev. 44(1), 273–284 (2016)

    Article  Google Scholar 

  35. Ludwig, A., Marcinkowski, J., Schmid, S.: Scheduling loop-free network updates: it’s good to relax! In: Proceedings of the 2015 ACM Symposium on Principles of Distributed Computing, pp. 13–22. ACM (2015)

    Google Scholar 

  36. Ludwig, A., Rost, M., Foucard, D., Schmid, S.: Good network updates for bad packets: waypoint enforcement beyond destination-based routing policies. In: Proceedings of 13th ACM Workshop on Hot Topics in Networks (HotNets), p. 15. ACM (2014)

    Google Scholar 

  37. Mahajan, R., Wattenhofer, R.: On consistent updates in software defined networks. In: Proceedings of 12th ACM Workshop on Hot Topics in Networks (HotNets), p. 20. ACM (2013)

    Google Scholar 

  38. McClurg, J., Hojjat, H., Cerný, P., Foster, N.: Efficient synthesis of network updates. In: Proceedings of the 36th ACM SIGPLAN Conference on Programming Language Design and Implementation, Portland, OR, USA, 15–17 June 2015, pp. 196–207 (2015). https://doi.org/10.1145/2737924.2737980

  39. McClurg, J., Hojjat, H., Černỳ, P., Foster, N.: Efficient synthesis of network updates. In: ACM SIGPLAN Notices, vol. 50, no. 6, pp. 196–207. ACM (2015)

    Google Scholar 

  40. Monsanto, C., Reich, J., Foster, N., Rexford, J., Walker, D.: Composing software defined networks. In: 10th USENIX Symposium on Networked Systems Design and Implementation (NSDI 2013), pp. 1–13 (2013)

    Google Scholar 

  41. Pnueli, A.: The temporal logic of programs. In: 18th Annual Symposium on Foundations of Computer Science, Providence, Rhode Island, USA, 31 October–1 November 1977, pp. 46–57. IEEE Computer Society (1977). https://doi.org/10.1109/SFCS.1977.32

  42. Prabhu, S., Chou, K.Y., Kheradmand, A., Godfrey, B., Caesar, M.: Plankton: scalable network configuration verification through model checking. In: 17th USENIX Symposium on Networked Systems Design and Implementation (\(\{\)NSDI\(\}\) 2020), pp. 953–967 (2020)

    Google Scholar 

  43. Reitblatt, M., Foster, N., Rexford, J., Schlesinger, C., Walker, D.: Abstractions for network update. ACM SIGCOMM Comput. Commun. Rev. 42(4), 323–334 (2012)

    Article  Google Scholar 

  44. Somenzi, F.: CUDD: CU decision diagram package release 3.0.0. University of Colorado at Boulder (2015). http://vlsi.colorado.edu/~fabio/CUDD/

  45. Steffen, S., Gehr, T., Tsankov, P., Vanbever, L., Vechev, M.: Probabilistic verification of network configurations. In: Proceedings of the Annual Conference of the ACM Special Interest Group on Data Communication on the Applications, Technologies, Architectures, and Protocols for Computer Communication, pp. 750–764 (2020)

    Google Scholar 

  46. Vissicchio, S., Cittadini, L.: FLIP the (flow) table: fast lightweight policy-preserving SDN updates. In: 35th Annual IEEE International Conference on Computer Communications, INFOCOM 2016, San Francisco, CA, USA, 10–14 April 2016, pp. 1–9 (2016). https://doi.org/10.1109/INFOCOM.2016.7524419

  47. Zerwas, J., et al.: AHAB: data-driven virtual cluster hunting. In: Proceedings of IFIP Networking (2018)

    Google Scholar 

  48. Zhang, Q., Liu, V., Zeng, H., Krishnamurthy, A.: High-resolution measurement of data center microbursts. In: Proceedings of the 2017 Internet Measurement Conference, pp. 78–85 (2017)

    Google Scholar 

  49. Zhou, W., Jin, D., Croft, J., Caesar, M., Godfrey, P.B.: Enforcing customizable consistency properties in software-defined networks. In: Proceedings of 12th USENIX Symposium on Networked Systems Design and Implementation (NSDI 2015), pp. 73–85 (2015)

    Google Scholar 

Download references

Acknowledgements

The research is partly funded by the Vienna Science and Technology Fund (WWTF), project WHATIF (ICT19-045), the ERC Advanced Grant LASSO, the Villum Investigator Grant S4OS, DFF project QASNET as well as DIREC: Digital Research Centre Denmark.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiří Srba .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Larsen, K.G., Mariegaard, A., Schmid, S., Srba, J. (2022). AllSynth: Transiently Correct Network Update Synthesis Accounting for Operator Preferences. In: Aït-Ameur, Y., Crăciun, F. (eds) Theoretical Aspects of Software Engineering. TASE 2022. Lecture Notes in Computer Science, vol 13299. Springer, Cham. https://doi.org/10.1007/978-3-031-10363-6_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-10363-6_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-10362-9

  • Online ISBN: 978-3-031-10363-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics