Abstract
The robustness of two important digital image forensic tasks (i.e. SIFT-based copy-move forgery detection and PRNU-based camera sensor identification) against four different lossy compression techniques is investigated (while typically, only JPEG compression is considered) to identify the best suited technique for this application scenario. Overall, we find that the accuracy of forensic tasks is reduced for increasing compression strength as expected, however, the relative performance of the compression schemes is different for the two tasks. While JPEG is superior for realistic application settings (where accuracy is in an acceptable range) in SIFT-based copy-move forgery detection, JPEG XR and BPG provide the best option for PRNU-based camera sensor identification, whereas JPEG is clearly impacting this forensic application most severely.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Sencar, H.T., Memon, N.: Digital Image Forensics: There is More To a Picture than Meets the Eye. Springer Verlag, New York (2012). https://doi.org/10.1007/978-1-4614-0757-7
Ardizzone, E., Bruno, A., Mazzola, G.: Detecting multiple copies in tampered images. In: 2010 IEEE International Conference on Image Processing, pp. 2117–2120. IEEE (2010)
Christlein, V., Riess, C., Jordan, J., Riess, C., Angelopoulou, E.: An evaluation of popular copy-move forgery detection approaches. IEEE Trans. Inf. Forensics Secur. 7(6), 1841–1854 (2012)
Zandi, M., Mahmoudi-Aznaveh, A., Mansouri, A.: Adaptive matching for copy-move forgery detection. In: 2014 IEEE International Workshop on Information Forensics and Security (WIFS), pp. 119–124. IEEE (2014)
Mushtaq, S., Mir, A.H.: Image copy move forgery detection: a review. Int. J. Future Gener. Commun. Netw. 11(2), 11–22 (2018)
Abdalla, Y., Iqbal, M.T., Shehata, M.: Copy-move forgery detection and localization using a generative adversarial network and convolutional neural-network. Information 10, 286 (2019)
Wu, Y., Abd-Almageed, W., Natarajan, P.: BusterNet: detecting copy-move image forgery with source/target localization. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11210, pp. 170–186. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01231-1_11
Huang, H.-Y., Ciou, A.-J.: Copy-move forgery detection for image forensics using the superpixel segmentation and the Helmert transformation. EURASIP J. Image Video Process. 2019(1), 1–16 (2019). https://doi.org/10.1186/s13640-019-0469-9
Pavlović, A., Glišović, N., Gavrovska, A., Reljin, I.: Copy-move forgery detection based on multifractals. Multimed. Tools Appl. 78(15), 20655–20678 (2019). https://doi.org/10.1007/s11042-019-7277-1
Bilal, M., Habib, H.A., Mehmood, Z., Yousaf, R.M., Saba, T., Rehman, A.: A robust technique for copy-move forgery detection from small and extremely smooth tampered regions based on the DHE-SURF features and mDBSCAN clustering. Australian J. Forensic Sci. 53, 1–24 (2020)
Saleem, M.: A key-point based robust algorithm for detecting cloning forgery. In: IEEE International Conference on Control System, Computing and Engineering (ICCSCE), vol. 4, pp. 2775–2779 (2014)
Do, T.T., Kijak, E., Furon, T., Amsaleg, L.: Deluding image recognition in SIFT-based CBIR systems. In: Proceedings of the 2nd ACM Workshop on Multimedia in Forensics, Security and Intelligence, pp. 7–12. ACM (2010)
Chierchia, G., Poggi, G., Sansone, C., Verdoliva, L.: PRNU-based forgery detection with regularity constraints and global optimization. In: 2013 IEEE 15th International Workshop on Multimedia Signal Processing (MMSP), pp.236–241 (2013)
Lukas, J., Fridrich, J., Goljan, M.: Digital camera identification from sensor pattern noise. IEEE Trans. Inf. Forensics Secur. 1(2), 205–214 (2006)
Fridrich, J.: Digital image forensics. IEEE Signal Process. Mag. 26(2), 26–37 (2009)
Huang, D.Y., Huang, C.N., Hu, W.C., Chou, C.H.: Robustness of copy-move forgery detection under high jpeg compression artifacts. Multimed. Tools Appl. 76, 1509–1530 (2015)
Huang, D.Y., Huang, C.N., Hu, W.C., Chou, C.H.: Robustness of copy-move forgery detection under high jpeg compression artifacts. Multimedia Tools Appl. 76(1), 1509–1530 (2017)
Joechl, R., Uhl, A.: Effects of image compression on image age approximation. In: 20th International Workshop on Digital-forensics and Watermarking (IWDW2021), Beijing, China (2021)
Goljan, M., Chen, M., Comesara, P., Fridrich, J.: Effect of compression on sensor-fingerprint based camera identification. Electron. Imaging. Media Watermark. Secur. Forensics 2016, 1–10 (2016)
Kumawat, C., Pankajakshan, V.: A robust jpeg compression detector for image forensics. Signal Process. Image Commun. 89, 116008 (2020)
Stamm, M.C., Liu, K.R.: Anti-forensics of digital image compression. IEEE Trans. Inf. Forensics Secur. 6(3), 1050–1065 (2011)
Stamm, M.C., Tjoa, S.K., Lin, W.S., Liu, K.R.: Undetectable image tampering through jpeg compression anti-forensics. In: 2010 IEEE International Conference on Image Processing, pp. 2109–2112 (2010)
Lu, W., Zhang, Q., Luo, S., Zhou, Y., Huang, J., Shi, Y.Q.: Robust estimation of upscaling factor on double jpeg compressed images. IEEE Trans. Cybern. 1–13 (2021)
Diallo, B., Urruty, T., Bourdon, P., Fernandez-Maloigne, C.: Robust forgery detection for compressed images using CNN supervision. Forensic Sci. Int. Rep. 2, 100112 (2020)
Diallo, B., Urruty, T., Bourdon, P., Fernandez-Maloigne, C.: Improving robustness of image tampering detection for compression. In: MMM 2019: MultiMedia Modeling, Thessaloniki, Greece, January 2019
Mandelli, S., Bonettini, N., Bestagini, P., Tubaro, S.: Training CNNs in presence of jpeg compression: Multimedia forensics vs computer vision. In: 2020 IEEE International Workshop on Information Forensics and Security (WIFS), pp. 1–6 (2020)
Amerini, I., Ballan, L., Caldelli, R., Del Bimbo, A., Serra, G.: A sift-based forensic method for copy-move attack detection and transformation recovery. IEEE Trans. Inf. Forensics Secur. 6(3), 1099–1110 (2011)
Mahdian, B., Saic, S.: Detection of copy-move forgery using a method based on blur moment invariants. Forensic Sci. Int. 171(2–3), 180–189 (2007)
Huang, H., Guo, W., Zhang, Y.: Detection of copy-move forgery in digital images using SIFT algorithm. In: Pacific-Asia Workshop on Computational Intelligence and Industrial Application, 2008. PACIIA 2008, vol. 2, pp. 272–276. IEEE (2008)
Mihcak, M.K., Kozintsev, I., Ramchandran, K.: Spatially adaptive statistical modeling of wavelet image coefficients and its application to denoising. In: Proceedings of 1999 IEEE International Conference on Acoustics, Speech, and Signal Processing, 1999, vol. 6, pp. 3253–3256. IEEE (1999)
Pennebaker, W., Mitchell, J.: JPEG - Still Image Compression Standard. Van Nostrand Reinhold, New York (1993)
Taubman, D., Marcellin, M.: JPEG2000 – Image Compression Fundamentals. Standards and Practice. Kluwer Academic Publishers, The Nethrlands (2002)
Dufaux, F., Sullivan, G.J., Ebrahimi, T.: The JPEG XR image coding standard. IEEE Signal Process. Mag. 26(6), 195–199 (2009)
Li, F., Krivenko, S., Lukin, V.: An approach to better portable graphics (BPG) compression with providing a desired quality. In: 2020 IEEE 2nd International Conference on Advanced Trends in Information Theory (ATIT), pp. 13–17 (2020)
Liu, F., Hernandez-Cabronero, M., Sanchez, V., Marcellin, M.W., Bilgin, A.: The current role of image compression standards in medical imaging. Information 8(4), 131 (2017)
Hofbauer, H., Rathgeb, C., Wagner, J., Uhl, A., Busch, C.: Investigation of better portable graphics compression for iris biometric recognition. In: Proceedings of the International Conference of the Biometrics Special Interest Group (BIOSIG 2015), Darmstadt, Germany, p. 8 (2015)
Rathgeb, C., Busch, C., Wagner, J., Pflug, A.: Effects of image compression on ear biometrics. IET Biom. 5(3), 252–261 (2016)
Darwiche, M., Pham, T.A., Delalandre, M.: Comparison of jpeg’s competitors for document images. In: 2015 International Conference on Image Processing Theory, Tools and Applications (IPTA), pp. 487–493 (2015)
Wild, P., Štolc, S., Valentín, K., Daubner, F., Clabian, M.: Compression effects on security document images. In: 2016 European Intelligence and Security Informatics Conference (EISIC), pp. 76–79 (2016)
Ardizzone, E., Bruno, A., Mazzola, G.: Copy-move forgery detection by matching triangles of keypoints. IEEE Trans. Inf. Forensics Secur. 10(10), 2084–2094 (2015)
Gloe, T., Böhme, R.: The Dresden image database for benchmarking digital image forensics. In: SAC 2010: Proceedings of the 2010 ACM Symposium on Applied Computing, pp. 1584–1590ACM (2010)
Acknowledgments
The authors gratefully acknowlege the contribution of the further Media Data Formats Lab students Max Göttl, Christoph Schwengler, Dennis Strähhuber, Benedikt Streitwieser, and Tim Ungerhofer. This work has been partially supported by the Salzburg State Government project “Artificial Intelligence in Industrial Vision Salzburg”.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Remy, O., Strumegger, S., Hämmerle-Uhl, J., Uhl, A. (2022). Comparative Compression Robustness Evaluation of Digital Image Forensics. In: Gervasi, O., Murgante, B., Hendrix, E.M.T., Taniar, D., Apduhan, B.O. (eds) Computational Science and Its Applications – ICCSA 2022. ICCSA 2022. Lecture Notes in Computer Science, vol 13376. Springer, Cham. https://doi.org/10.1007/978-3-031-10450-3_19
Download citation
DOI: https://doi.org/10.1007/978-3-031-10450-3_19
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-10449-7
Online ISBN: 978-3-031-10450-3
eBook Packages: Computer ScienceComputer Science (R0)