Skip to main content

Acoustic Wavefields Simulation by the Ray Method with Approximation of a Broadband Signal Propagation

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2022 (ICCSA 2022)

Abstract

The paper presents a method for calculating frequency-dependent rays, which allows effective approximation of a broadband signal propagation. We provide comparative analysis of this method with the standard ray method and the finite-difference method. The developed algorithm is promising for modelling and inverse problems. We performed the numerical examples for the realistic Sigsbee model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Babich, V.M., Buldyrev, V.S.: Asymptotic Methods in Short-Wavelength Diffraction Theory. Alpha Science (2009)

    Google Scholar 

  2. Cerveny, V., Molotkov, I.A., Psencik, I.: Ray Theory in Seismology. Charles University Press, Prague (1977)

    Google Scholar 

  3. Cerveny, V.: Seismic Ray Theory. Cambridge University Press, Cambridge (2001)

    Book  Google Scholar 

  4. Schneider, W.: Integral formulation for migration in two and three dimensions. Geophysics 43, 49–76 (1978)

    Article  Google Scholar 

  5. Bleistein, N.: On the imaging of reflectors in the earth. Geophysics 52, 931–942 (1987)

    Article  Google Scholar 

  6. Audebert, F., Nichols, D., Rekdal, T., Biondi, B., Lumley, D., Urdaneta, H.: Imaging complex geologic structure with single-arrival Kirchhoff prestack depth migration. Geophysics 62, 1533–1543 (1997)

    Article  Google Scholar 

  7. Kravtsov, Y., Orlov, Y.: Geometrical Optics of Inhomogeneous Media. Springer, Heidelberg (1990)

    Book  Google Scholar 

  8. Ben-Menahem, A., Beydoun, W.B.: Range of validity of seismic ray and beam methods in general inhomogeneous media – I. General theory. Geophys. J. Int. 82, 207–234 (1985)

    Article  Google Scholar 

  9. Marquering, H., Dahlen, F.A., Nolet, G.: Three-dimensional sensitivity kernels for finite-frequency traveltimes: the banana-doughnut paradox. Geophys. J. Int. 137, 805–815 (1999)

    Article  Google Scholar 

  10. Dahlen, F.A., Hung, S.-H., Nolet, G.: Fréchet kernels for finite-frequency traveltimes—I. Theory. Geophys. J. Int. 141, 157–174 (2000)

    Google Scholar 

  11. Cerveny, V., Soares, J.E.P.: Fresnel volume ray tracing. Geophysics 57, 902–915 (1992)

    Article  Google Scholar 

  12. Lomax, A.: The wavelength-smoothing method for approximating broad-band wave propagation through complicated velocity structures. Geophys. J. Int. 117, 313–334 (1994)

    Article  Google Scholar 

  13. Vasco, D.W., Peterson, J.E., Majer, E.L.: Beyond ray tomography: wavepaths and Fresnel volumes. Geophysics 60, 1790–1804 (1995)

    Article  Google Scholar 

  14. Bube, K.P., Washbourne, J.K.: Wave tracing: ray tracing for the propagation of band-limited signals: part 1 – theory. Geophysics 73, VE377-VE384 (2008)

    Google Scholar 

  15. Protasov, M.I., Yarman, C.E., Nichols, D., Osypov, K., Cheng X.: Frequency-dependent ray-tracing through rugose interfaces. In: Proceedings of 2011 81st SEG Annual Meeting, pp. 2992–2996. SEG (2011)

    Google Scholar 

  16. Yarman, C.E., Cheng, X., Osypov, K., Nichols, D., Protasov, M.: Band-limited ray tracing. Geophys. Prosp. 61, 1194–1205 (2013)

    Article  Google Scholar 

  17. Vasco, D.W., Nihei, K.: Broad-band trajectory mechanics. Geophys. J. Int. 216, 745–759 (2019)

    Google Scholar 

  18. Vasco, D.W., Nihei, K.T.: A trajectory mechanics approach for the study of wave propagation in an anisotropic elastic medium. Geophys. J. Int. 219, 1885–1899 (2019)

    Article  Google Scholar 

  19. Foreman, T.L.: An exact ray theoretical formulation of the Helmholtz equation. J. Acoust. Soc. Am. 86, 234–246 (1989)

    Article  Google Scholar 

  20. Protasov, M., Gadylshin, K.: Exact frequency dependent rays on the basis of Helmholtz solver, In: Proceedings of 2015 83rd SEG Annual Meeting, pp. 3739–3743. SEG (2015)

    Google Scholar 

  21. Protasov, M., Gadylshin, K.: Computational method for exact frequency-dependent rays on the basis of the solution of the Helmholtz equation. Geophys. J. Int. 210, 525–533 (2017)

    Article  Google Scholar 

  22. Chen, J., Zelt, C.A.: Comparison of full wavefield synthetics with frequency-dependent traveltimes calculated using wavelength-dependent velocity smoothing. J. Environ. Eng. Geophys. 22, 133–141 (2017)

    Article  Google Scholar 

  23. Virieux, J., Operto, S.: An overview of full-waveform inversion in exploration geophysics. Geophysics 78, WCC1–WCC26 (2009)

    Google Scholar 

  24. Operto, M.S., Xu, S., Lambare, G.: Can we quantitatively image complex structures with rays. Geophysics 65, 1223–1238 (2000)

    Article  Google Scholar 

  25. Paffenholz J., Stefani, J., McLain, B., Bishop, K.: SIGSBEE_2A synthetic subsalt dataset - image quality as function of migration algorithm and velocity model error. In: Proceedings of 2002 64th EAGE Conference and Exhibition, cp-5–00108, EAGE (2002)

    Google Scholar 

  26. Cohen, J.K., Stockwell, Jr. J.W.: CWP/SU: Seismic Un*x Release No.39: an open source software package for seismic research and processing, Center for Wave Phenomena, Colorado School of Mines (2005)

    Google Scholar 

Download references

Acknowledgments

The reported study was funded by RFBR and GACR, project number 20-55-26003.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitry Neklyudov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Neklyudov, D., Protasov, M. (2022). Acoustic Wavefields Simulation by the Ray Method with Approximation of a Broadband Signal Propagation. In: Gervasi, O., Murgante, B., Hendrix, E.M.T., Taniar, D., Apduhan, B.O. (eds) Computational Science and Its Applications – ICCSA 2022. ICCSA 2022. Lecture Notes in Computer Science, vol 13376. Springer, Cham. https://doi.org/10.1007/978-3-031-10450-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-10450-3_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-10449-7

  • Online ISBN: 978-3-031-10450-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics