Abstract
Transactional data (such as diagnostic codes, customer shopping lists) are shared or published on the Internet for use in many applications. However, before sharing, it is protected by anonymization techniques such as disassociation. Disassociation makes data confidential without suppressing or altering it. However, it has been found to have a cover problem in disassociated data, which weakens its level of privacy. To overcome these shortcomings, we propose an algorithm based essentially on the addition of items. The performance evaluation results show that our algorithm completely suppresses the cover problem without significant information loss.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Xu, Y., Wang, K., Fu, A.W.C., Yu, P.S.: Anonymizing transaction databases for publication. In: Proceeding of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining - KDD 2008. ACM Press (2008). https://doi.org/10.1145/1401890.1401982
Arava, K., Lingamgunta, S.: Adaptive k-anonymity approach for privacy preserving in cloud. Arab. J. Sci. Eng. 45(4), 2425–2432 (2019). https://doi.org/10.1007/s13369-019-03999-0
Adar, E., Weld, D.S., Bershad, B.N., Gribble, S.S.: Why we search. In: Proceedings of the 16th International Conference on World Wide Web - WWW 2007. ACM Press (2007). https://doi.org/10.1145/1242572.1242595
Kim, S.S., Choi, S.H., Lee, S.M., Hong, S.C.: Enhanced catalytic activity of Pt/AL2O3 on the CH4 SCR. J. Ind. Eng. Chem. 18(1), 272–276 (2012). https://doi.org/10.1016/j.jiec.2011.11.041
Motwani, R., Nabar, S.U.: Anonymizing unstructured data (2008)
Wang, S.-L., Tsai, Y.-C., Kao, H.-Y., Hong, T.-P.: On anonymizing transactions with sensitive items. Appl. Intell. 41(4), 1043–1058 (2014). https://doi.org/10.1007/s10489-014-0554-9
Terrovitis, M., Mamoulis, N., Kalnis, P.: Local and global recoding methods for anonymizing set-valued data. VLDB J. 20(1), 83–106 (2010). https://doi.org/10.1007/s00778-010-0192-8
Gai, K., Qiu, M., Zhao, H.: Privacy-preserving data encryption strategy for big data in mobile cloud computing. IEEE Trans. Big Data 7(4), 678–688 (2017). https://doi.org/10.1109/tbdata.2017.2705807
Terrovitis, M., Mamoulis, N., Liagouris, J., Skiadopoulos, S.: Privacy preservation by disassociation. Proc. VLDB Endow. 5(10), 944–955 (2012). https://doi.org/10.14778/2336664.2336668
Bewong, M., Liu, J., Liu, L., Li, J.: Utility aware clustering for publishing transactional data. In: Kim, J., Shim, K., Cao, L., Lee, J.-G., Lin, X., Moon, Y.-S. (eds.) PAKDD 2017. LNCS (LNAI), vol. 10235, pp. 481–494. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57529-2_38
Loukides, G., Liagouris, J., Gkoulalas-Divanis, A., Terrovitis, M.: Utility-constrained electronic health record data publishing through generalization and disassociation. In: Gkoulalas-Divanis, A., Loukides, G. (eds.) Medical Data Privacy Handbook, pp. 149–177. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23633-9_7
Terrovitis, M., Mamoulis, N., Kalnis, P.: Privacy-preserving anonymization of set-valued data. Proc. VLDB Endow. 1(1), 115–125 (2008). https://doi.org/10.14778/1453856.1453874
Barakat, S., Bouna, B.A., Nassar, M., Guyeux, C.: On the evaluation of the privacy breach in disassociated set-valued datasets. In: Proceedings of the 13th International Joint Conference on e-Business and Telecommunications. SCITEPRESS - Science and Technology Publications (2016). https://doi.org/10.5220/0005969403180326
Awad, N., Al Bouna, B., Couchot, J.-F., Philippe, L.: Safe disassociation of set-valued datasets. J. Intell. Inf. Syst. 53(3), 547–562 (2019). https://doi.org/10.1007/s10844-019-00568-7
Puri, V., Kaur, P., Sachdeva, S.: Effective removal of privacy breaches in disassociated transactional datasets. Arab. J. Sci. Eng. 45(4), 3257–3272 (2020). https://doi.org/10.1007/s13369-020-04353-5
Gkoulalas-Divanis, A., Loukides, G.: PCTA. In: Proceedings of the 4th International Workshop on Privacy and Anonymity in the Information Society - PAIS 2011. ACM Press (2011). https://doi.org/10.1145/1971690.1971695
Samarati, P.: Protecting respondents identities in microdata release. IEEE Trans. Knowl. Data Eng. 13(6), 1010–1027 (2001). https://doi.org/10.1109/69.971193
Jia, X., Pan, C., Xu, X., Zhu, K.Q., Lo, E.: \(\rho \)-uncertainty anonymization by partial suppression. In: Bhowmick, S.S., Dyreson, C.E., Jensen, C.S., Lee, M.L., Muliantara, A., Thalheim, B. (eds.) DASFAA 2014. LNCS, vol. 8422, pp. 188–202. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-05813-9_13
Martin, D.J., Kifer, D., Machanavajjhala, A., Gehrke, J., Halpern, J.Y.: Worst-case background knowledge for privacy-preserving data publishing. In: 2007 IEEE 23rd International Conference on Data Engineering. IEEE (2007). https://doi.org/10.1109/icde.2007.367858
Sweeney, L.: k-anonymity: a model for protecting privacy. Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 10(05), 557–570 (2002). https://doi.org/10.1142/s0218488502001648
Puri, V., Sachdeva, S., Kaur, P.: Privacy preserving publication of relational and transaction data: survey on the anonymization of patient data. Comput. Sci. Rev. 32, 45–61 (2019). https://doi.org/10.1016/j.cosrev.2019.02.001
Tsai, Y.C., Wang, S.L., Ting, I.H., Hong, T.P.: Flexible anonymization of transactions with sensitive items. In: 2018 5th International Conference on Behavioral, Economic, and Socio-Cultural Computing (BESC). IEEE (2018). https://doi.org/10.1109/besc.2018.8697320
Ghinita, G., Tao, Y., Kalnis, P.: On the anonymization of sparse high-dimensional data. In: 2008 IEEE 24th International Conference on Data Engineering. IEEE (2008). https://doi.org/10.1109/icde.2008.4497480
Loukides, G., Gkoulalas-Divanis, A., Malin, B.: COAT: constraint-based anonymization of transactions. Knowl. Inf. Syst. 28(2), 251–282 (2010). https://doi.org/10.1007/s10115-010-0354-4
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Monsan, A.C., Adepo, J.C., N’zi, E.C., Goore, B.T. (2022). Addition-Based Algorithm to Overcome Cover Problem During Anonymization of Transactional Data. In: Arai, K. (eds) Intelligent Computing. SAI 2022. Lecture Notes in Networks and Systems, vol 506. Springer, Cham. https://doi.org/10.1007/978-3-031-10461-9_62
Download citation
DOI: https://doi.org/10.1007/978-3-031-10461-9_62
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-10460-2
Online ISBN: 978-3-031-10461-9
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)