Skip to main content

Addition-Based Algorithm to Overcome Cover Problem During Anonymization of Transactional Data

  • Conference paper
  • First Online:
Intelligent Computing (SAI 2022)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 506))

Included in the following conference series:

  • 949 Accesses

Abstract

Transactional data (such as diagnostic codes, customer shopping lists) are shared or published on the Internet for use in many applications. However, before sharing, it is protected by anonymization techniques such as disassociation. Disassociation makes data confidential without suppressing or altering it. However, it has been found to have a cover problem in disassociated data, which weakens its level of privacy. To overcome these shortcomings, we propose an algorithm based essentially on the addition of items. The performance evaluation results show that our algorithm completely suppresses the cover problem without significant information loss.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://www.philippe-fournier-viger.com/spmf/datasets/BMS1_spmf.

  2. 2.

    http://www.philippe-fournier-viger.com/spmf/datasets/BMS2.txt.

References

  1. Xu, Y., Wang, K., Fu, A.W.C., Yu, P.S.: Anonymizing transaction databases for publication. In: Proceeding of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining - KDD 2008. ACM Press (2008). https://doi.org/10.1145/1401890.1401982

  2. Arava, K., Lingamgunta, S.: Adaptive k-anonymity approach for privacy preserving in cloud. Arab. J. Sci. Eng. 45(4), 2425–2432 (2019). https://doi.org/10.1007/s13369-019-03999-0

    Article  Google Scholar 

  3. Adar, E., Weld, D.S., Bershad, B.N., Gribble, S.S.: Why we search. In: Proceedings of the 16th International Conference on World Wide Web - WWW 2007. ACM Press (2007). https://doi.org/10.1145/1242572.1242595

  4. Kim, S.S., Choi, S.H., Lee, S.M., Hong, S.C.: Enhanced catalytic activity of Pt/AL2O3 on the CH4 SCR. J. Ind. Eng. Chem. 18(1), 272–276 (2012). https://doi.org/10.1016/j.jiec.2011.11.041

    Article  Google Scholar 

  5. Motwani, R., Nabar, S.U.: Anonymizing unstructured data (2008)

    Google Scholar 

  6. Wang, S.-L., Tsai, Y.-C., Kao, H.-Y., Hong, T.-P.: On anonymizing transactions with sensitive items. Appl. Intell. 41(4), 1043–1058 (2014). https://doi.org/10.1007/s10489-014-0554-9

    Article  Google Scholar 

  7. Terrovitis, M., Mamoulis, N., Kalnis, P.: Local and global recoding methods for anonymizing set-valued data. VLDB J. 20(1), 83–106 (2010). https://doi.org/10.1007/s00778-010-0192-8

    Article  Google Scholar 

  8. Gai, K., Qiu, M., Zhao, H.: Privacy-preserving data encryption strategy for big data in mobile cloud computing. IEEE Trans. Big Data 7(4), 678–688 (2017). https://doi.org/10.1109/tbdata.2017.2705807

    Article  Google Scholar 

  9. Terrovitis, M., Mamoulis, N., Liagouris, J., Skiadopoulos, S.: Privacy preservation by disassociation. Proc. VLDB Endow. 5(10), 944–955 (2012). https://doi.org/10.14778/2336664.2336668

    Article  Google Scholar 

  10. Bewong, M., Liu, J., Liu, L., Li, J.: Utility aware clustering for publishing transactional data. In: Kim, J., Shim, K., Cao, L., Lee, J.-G., Lin, X., Moon, Y.-S. (eds.) PAKDD 2017. LNCS (LNAI), vol. 10235, pp. 481–494. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57529-2_38

    Chapter  Google Scholar 

  11. Loukides, G., Liagouris, J., Gkoulalas-Divanis, A., Terrovitis, M.: Utility-constrained electronic health record data publishing through generalization and disassociation. In: Gkoulalas-Divanis, A., Loukides, G. (eds.) Medical Data Privacy Handbook, pp. 149–177. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23633-9_7

    Chapter  Google Scholar 

  12. Terrovitis, M., Mamoulis, N., Kalnis, P.: Privacy-preserving anonymization of set-valued data. Proc. VLDB Endow. 1(1), 115–125 (2008). https://doi.org/10.14778/1453856.1453874

    Article  Google Scholar 

  13. Barakat, S., Bouna, B.A., Nassar, M., Guyeux, C.: On the evaluation of the privacy breach in disassociated set-valued datasets. In: Proceedings of the 13th International Joint Conference on e-Business and Telecommunications. SCITEPRESS - Science and Technology Publications (2016). https://doi.org/10.5220/0005969403180326

  14. Awad, N., Al Bouna, B., Couchot, J.-F., Philippe, L.: Safe disassociation of set-valued datasets. J. Intell. Inf. Syst. 53(3), 547–562 (2019). https://doi.org/10.1007/s10844-019-00568-7

    Article  Google Scholar 

  15. Puri, V., Kaur, P., Sachdeva, S.: Effective removal of privacy breaches in disassociated transactional datasets. Arab. J. Sci. Eng. 45(4), 3257–3272 (2020). https://doi.org/10.1007/s13369-020-04353-5

    Article  Google Scholar 

  16. Gkoulalas-Divanis, A., Loukides, G.: PCTA. In: Proceedings of the 4th International Workshop on Privacy and Anonymity in the Information Society - PAIS 2011. ACM Press (2011). https://doi.org/10.1145/1971690.1971695

  17. Samarati, P.: Protecting respondents identities in microdata release. IEEE Trans. Knowl. Data Eng. 13(6), 1010–1027 (2001). https://doi.org/10.1109/69.971193

    Article  Google Scholar 

  18. Jia, X., Pan, C., Xu, X., Zhu, K.Q., Lo, E.: \(\rho \)-uncertainty anonymization by partial suppression. In: Bhowmick, S.S., Dyreson, C.E., Jensen, C.S., Lee, M.L., Muliantara, A., Thalheim, B. (eds.) DASFAA 2014. LNCS, vol. 8422, pp. 188–202. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-05813-9_13

    Chapter  Google Scholar 

  19. Martin, D.J., Kifer, D., Machanavajjhala, A., Gehrke, J., Halpern, J.Y.: Worst-case background knowledge for privacy-preserving data publishing. In: 2007 IEEE 23rd International Conference on Data Engineering. IEEE (2007). https://doi.org/10.1109/icde.2007.367858

  20. Sweeney, L.: k-anonymity: a model for protecting privacy. Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 10(05), 557–570 (2002). https://doi.org/10.1142/s0218488502001648

    Article  MathSciNet  MATH  Google Scholar 

  21. Puri, V., Sachdeva, S., Kaur, P.: Privacy preserving publication of relational and transaction data: survey on the anonymization of patient data. Comput. Sci. Rev. 32, 45–61 (2019). https://doi.org/10.1016/j.cosrev.2019.02.001

    Article  MathSciNet  Google Scholar 

  22. Tsai, Y.C., Wang, S.L., Ting, I.H., Hong, T.P.: Flexible anonymization of transactions with sensitive items. In: 2018 5th International Conference on Behavioral, Economic, and Socio-Cultural Computing (BESC). IEEE (2018). https://doi.org/10.1109/besc.2018.8697320

  23. Ghinita, G., Tao, Y., Kalnis, P.: On the anonymization of sparse high-dimensional data. In: 2008 IEEE 24th International Conference on Data Engineering. IEEE (2008). https://doi.org/10.1109/icde.2008.4497480

  24. Loukides, G., Gkoulalas-Divanis, A., Malin, B.: COAT: constraint-based anonymization of transactions. Knowl. Inf. Syst. 28(2), 251–282 (2010). https://doi.org/10.1007/s10115-010-0354-4

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Apo Chimène Monsan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Monsan, A.C., Adepo, J.C., N’zi, E.C., Goore, B.T. (2022). Addition-Based Algorithm to Overcome Cover Problem During Anonymization of Transactional Data. In: Arai, K. (eds) Intelligent Computing. SAI 2022. Lecture Notes in Networks and Systems, vol 506. Springer, Cham. https://doi.org/10.1007/978-3-031-10461-9_62

Download citation

Publish with us

Policies and ethics