Skip to main content

Towards Tackling QSAT Problems with Deep Learning and Monte Carlo Tree Search

  • Conference paper
  • First Online:
Intelligent Computing (SAI 2022)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 507))

Included in the following conference series:

Abstract

Recent achievements of AlphaZero using self-play has shown remarkable performance on several board games. It is plausible to think that self-play, starting from zero knowledge, can gradually approximate a winning strategy for certain two-player games after an amount of training. In this paper, we present a proof-of-concept to solve small instances of Quantified Boolean Formula Satisfaction (QSAT) problems by leveraging the computational power from neural Monte Carlo Tree Search (neural MCTS). QSAT is a PSPACE-complete problem with many practical applications. We propose a way to encode Quantified Boolean Formulas (QBFs) as graphs and apply a graph neural network (GNN) to embed the QBFs into the neural MCTS. After training, an off-the-shelf QSAT solver is used to evaluate the performance of the algorithm. Our result shows that, for problems within a limited size, the algorithm learns to solve the problem correctly merely from self-play. It is impressive that neural MCTS is succeeding on small QSAT problems but research is needed to better understand the algorithm and its parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    There are two ways to interpret this acronym: 1) the Polynomial Upper Confidence Tree [2], as the exploration term under the square root is polynomial. (it usually was a logarithmic function in other UCB formulas); 2) the Predictor Upper Confidence Tree [15] because the probability prediction from the neural network is used to penalize the exploration term.

  2. 2.

    Theoretically, the exploratory term should be \(\sqrt{\frac{\sum _{a'}N(s_{i-1},a')}{N(s_{i-1},a)+1}}\), however, AlphaZero used the variant \(\frac{\sqrt{\sum _{a'} N(s_{i-1},a')}}{N(s_{i-1},a)+1}\) without any explanation. We tried both in our implementation, and it turns out that the AlphaZero one performs much better.

  3. 3.

    The reason why we treat the two players asymmetrically is that our graph encoding of the QBF based on the CNF of the matrix. Therefore, a negation of the matrix will result in a different CNF, which will change the encoding.

References

  1. Anthony, T., Tian, Z., Barber, D.: Thinking fast and slow with deep learning and tree search. In: Advances in Neural Information Processing Systems, pp. 5360–5370 (2017)

    Google Scholar 

  2. Auger, D., Couëtoux, A., Teytaud, O.: Continuous upper confidence trees with polynomial exploration – consistency. In: Blockeel, H., Kersting, K., Nijssen, S., Železný, F. (eds.) ECML PKDD 2013. LNCS (LNAI), vol. 8188, pp. 194–209. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40988-2_13

    Chapter  Google Scholar 

  3. Battaglia, P.W., et al.: Relational inductive biases, deep learning, and graph networks (2018). arXiv preprint arXiv:1806.01261

  4. Bjornsson, Y., Finnsson, H.: Cadiaplayer: a simulation-based general game player. IEEE Trans. Comput. Intell. AI Games 1(1), 4–15 (2009)

    Article  Google Scholar 

  5. Browne, C., et al.: A survey of monte carlo tree search methods. IEEE Trans. Comput. Intell. AI Games 4(1), 1–43 (2012)

    Google Scholar 

  6. Genesereth, M., Love, N., Pell, B.: General game playing: overview of the AAAI competition. AI Mag. 26(2), 62–62 (2005)

    Google Scholar 

  7. Gilmer, J., Schoenholz, S.S., Riley, P.F., Vinyals, O., Dahl, G.E.: Neural message passing for quantum chemistry. In: Proceedings of the 34th International Conference on Machine Learning, vol. 70, pp. 1263–1272 (2017), JMLR. org

    Google Scholar 

  8. Janota, M.: Towards generalization in QBF solving via machine learning. In: Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence, AAAI 2018, pp. 6607–6614 (2018)

    Google Scholar 

  9. Janota, M., Klieber, W., Marques-Silva, J., Clarke, E.: Solving QBF with counterexample guided refinement. In: Cimatti, A., Sebastiani, R. (eds.) SAT 2012. LNCS, vol. 7317, pp. 114–128. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31612-8_10

    Chapter  Google Scholar 

  10. Kauers, M., Seidl, M.: Symmetries of quantified boolean formulas (2018). arXiv, abs/1802.03993,

    Google Scholar 

  11. Kleinberg, J., Tardos, E.: Algorithm Design. Addison-Wesley Longman Publishing Co. Inc., Boston (2005)

    Google Scholar 

  12. Klieber, W., Sapra, S., Gao, S., Clarke, E.: A non-prenex, non-clausal QBF solver with game-state learning. In: Strichman, O., Szeider, S. (eds.) SAT 2010. LNCS, vol. 6175, pp. 128–142. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14186-7_12

    Chapter  Google Scholar 

  13. Li, Y., Tarlow,D., Brockschmidt, M., Zemel, R.S.: Gated graph sequence neural networks. In: 4th International Conference on Learning Representations, ICLR 2016, San Juan, Puerto Rico, 2–4 May 2016, Conference Track Proceedings (2016)

    Google Scholar 

  14. Rezende, M., Chaimowicz, L.: A methodology for creating generic game playing agents for board games. In: 2017 16th Brazilian Symposium on Computer Games and Digital Entertainment, SBGames, pp. 19–28. IEEE (2017)

    Google Scholar 

  15. Rosin, C.D.: Multi-armed bandits with episode context. Ann. Math. Artif. Intell. 61(3), 203–230 (2011)

    Article  MathSciNet  Google Scholar 

  16. Selsam, D., Lamm, M., Bunz, B., Liang, P., de Moura, L., Dill, D.L.: Learning a sat solver from single-bit supervision (2018). arXiv preprint, arXiv:1802.03685

  17. Silver, D., et al.: Mastering the game of Go with deep neural networks and tree search. Nature 529, 484 (2016)

    Google Scholar 

  18. Silver, D., et al.: A general reinforcement learning algorithm that masters chess, shogi, and go through self-play. Science 362(6419), 1140–1144 (2018)

    Article  MathSciNet  Google Scholar 

  19. Silver, D.: Mastering chess and shogi by self-play with a general reinforcement learning algorithm (2017). CoRR, abs/1712.01815

    Google Scholar 

  20. Silver, D., et al.: Mastering the game of Go without human knowledge. Nature 550, 354 (2017)

    Article  Google Scholar 

  21. Xu, R., Lieberherr, K.: Learning self-game-play agents for combinatorial optimization problems. In: Proceedings of the 18th International Conference on Autonomous Agents and MultiAgent Systems, AAMAS 2019, pp. 2276–2278. IFAAMS (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruiyang Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xu, R., Lieberherr, K. (2022). Towards Tackling QSAT Problems with Deep Learning and Monte Carlo Tree Search. In: Arai, K. (eds) Intelligent Computing. SAI 2022. Lecture Notes in Networks and Systems, vol 507. Springer, Cham. https://doi.org/10.1007/978-3-031-10464-0_4

Download citation

Publish with us

Policies and ethics