Abstract
The integration of deep learning and control techniques has created robotic systems capable of implementing visual servoing and navigating autonomously in unknown environments. However, analyzing the effect that timing interactions between controllers and deep neural networks have, has received little attention in the literature. In this paper we describe a novel model that includes the effects that detection loss and inference latency have on the controller of a visual servoing system. To test our model we created a target tracking system consisting of a video camera mounted on a moving platform that tracks objects using deep neural networks.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Finddelay: Estimate delay(s) between signals. https://se.mathworks.com/help/signal/ref/finddelay.htm. Accessed 24 Nov 2021
Bojarski, M., et al.: End to end learning for self-driving cars. arXiv preprint arXiv:1604.07316 (2016)
Geiger, W., et al.: MEMS IMU for AHRS applications. In: 2008 IEEE/ION Position, Location and Navigation Symposium, pp. 225–231. IEEE (2008)
Gemerek, J., Ferrari, S., Wang, B.H., Campbell, M.E.: Video-guided camera control for target tracking and following. IFAC-PapersOnLine 51(34), 176–183 (2019). 2nd IFAC Conference on Cyber-Physical and Human Systems CPHS 2018
Giusti, A., et al.: A machine learning approach to visual perception of forest trails for mobile robots. IEEE Robot. Autom. Lett. 1(2), 661–667 (2016)
Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press (2016)
Hadidi, R., Cao, J., Xie, Y., Asgari, B., Krishna, T., Kim, H.: Characterizing the deployment of deep neural networks on commercial edge devices. In: 2019 IEEE International Symposium on Workload Characterization (IISWC), pp. 35–48. IEEE (2019)
Howard, A., et al.: Searching for MobileNetV3. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1314–1324 (2019)
Howard, A.G., et al.: MobileNets: efficient convolutional neural networks for mobile vision applications. CoRR abs/1704.04861 (2017)
Hutchinson, S., Hager, G.D., Corke, P.I.: A tutorial on visual servo control. IEEE Trans. Robot. Autom. 12(5), 651–670 (1996)
Jia, Z., Balasuriya, A., Challa, S.: Vision based data fusion for autonomous vehicles target tracking using interacting multiple dynamic models. Comput. Vis. Image Underst. 109(1), 1–21 (2008)
Kragic, D., Christensen, H.I., et al.: Survey on visual servoing for manipulation. Computational Vision and Active Perception Laboratory, Fiskartorpsv, 15:2002 (2002)
Larsen, T.D., Andersen, N.A., Ravn, O., Poulsen, N.K.: Incorporation of time delayed measurements in a discrete-time Kalman filter. In: Proceedings of the 37th IEEE Conference on Decision and Control (Cat. No. 98CH36171), vol. 4, pp. 3972–3977. IEEE (1998)
LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)
LeCun, Y., et al.: Backpropagation applied to handwritten zip code recognition. Neural Comput. 1(4), 541–551 (1989). https://doi.org/10.1162/neco.1989.1.4.541
Liu, W., et al.: SSD: single shot multibox detector. CoRR, abs/1512.02325 (2015)
Loquercio, A., Maqueda, A.I., del Blanco, C.R., Scaramuzza, D.: DroNet: learning to fly by driving. IEEE Robot. Autom. Lett. 3(2), 1088–1095 (2018)
Machkour, Z., Ortiz-Arroyo, D., Durdevic, P.: Classical and deep learning based visual servoing systems: a survey on state of the art. J. Intell. Robot. Syst. 104(1), 1–27 (2022). https://doi.org/10.1007/s10846-021-01540-w
Nilsson, J., et al.: Real-Time Control Systems with Delays (1998)
Petar, D., Ortiz-Arroyo, D., Li, S., Yang, Z.: Vision aided navigation of a quad-rotor for autonomous wind-farm inspection. IFAC-PapersOnLine 52, 61–66 (2019)
Ramakoti, N., Vinay, A., Jatoth, R.K.: Particle swarm optimization aided kalman filter for object tracking. In: 2009 International Conference on Advances in Computing, Control, and Telecommunication Technologies, pp. 531–533 (2009)
Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vis. 115(3), 211–252 (2015). https://doi.org/10.1007/s11263-015-0816-y
Sariyildiz, E., Oboe, R., Ohnishi, K.: Disturbance observer-based robust control and its applications: 35th anniversary overview. IEEE Trans. Industr. Electron. 67(3), 2042–2053 (2019)
Schenato, L.: Kalman filtering for networked control systems with random delay and packet loss. In: Conference of Mathematical Theory of Networks and Systems. MTNS 2006. Citeseer (2006)
Schenato, L.: Optimal estimation in networked control systems subject to random delay and packet drop. IEEE Trans. Autom. Control 53(5), 1311–1317 (2008)
Schenato, L., Sinopoli, B., Franceschetti, M., Poolla, K., Sastry, S.S.: Foundations of control and estimation over lossy networks. Proc. IEEE 95(1), 163–187 (2007)
Shi, L., Epstein, M., Murray, R.M.: Kalman filtering over a packet-dropping network: a probabilistic perspective. IEEE Trans. Autom. Control 55(3), 594–604 (2010)
Sinopoli, B., Schenato, L., Franceschetti, M., Poolla, K., Jordan, M.I., Sastry, S.S.: Kalman filtering with intermittent observations. IEEE Trans. Autom. Control 49(9), 1453–1464 (2004). https://doi.org/10.1109/TAC.2004.834121
Tsai, C.-Y., Dutoit, X., Song, K.-T., Van Brussel, H., Nuttin, M.: Robust face tracking control of a mobile robot using self-tuning kalman filter and echo state network. Asian J. Control 12(4), 488–509 (2010)
Zhang, W., Branicky, M.S., Phillips, S.M.: Stability of networked control systems. IEEE Control. Syst. 21(1), 84–99 (2001). https://doi.org/10.1109/37.898794
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Durdevic, P., Ortiz-Arroyo, D. (2022). Dynamic Analysis and Modeling of DNN-Based Visual Servoing Systems. In: Arai, K. (eds) Intelligent Computing. SAI 2022. Lecture Notes in Networks and Systems, vol 507. Springer, Cham. https://doi.org/10.1007/978-3-031-10464-0_59
Download citation
DOI: https://doi.org/10.1007/978-3-031-10464-0_59
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-10463-3
Online ISBN: 978-3-031-10464-0
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)