Abstract
COVID-19 has been identified as a highly contagious and rapidly spreading disease around the world. The high infection and mortality rate characterizes this as a very dangerous disease and has been marked as a global pandemic by the world health organization. Existing COVID-19 testing methods, such as RT-PCR are not completely reliable or convenient. Since the virus affects the respiratory tract, manual analysis of chest X-rays could be a more reliable but not convenient or scalable testing technique. Hence, there is an urgent need for a faster, cheaper, and automated way of detecting the presence of the virus by automatically analyzing chest X-ray images using deep learning algorithms. ResNetV2 is one of the pre-trained deep convolutional neural network models that could be explored for this task. This paper aims to utilize the ResNetV2 model for the detection of COVID-19 from chest X-ray images to maximize the performance of this task. This study performs fine-tuning of ResNetV2 networks (specifically, ResNet101V2), which is performed in two main stages: firstly, training model with frozen ResNetV2 base layers, and secondly, unfreezing some layers of the ResNetV2 and retraining with a lower learning rate. Model fine-tuned on ResNet101V2 shows competitive and promising results with 98.50% accuracy and 97.24% sensitivity.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
How long do COVID-19 test results take? (2021)
Worldometer: COVID-19 coronavirus pandemic (2021)
Afshar, P., Heidarian, S., Naderkhani, F., Oikonomou, A., Plataniotis, K.N., Mohammadi, A.: COVID-CAPS: a capsule network-based framework for identification of COVID-19 cases from X-ray images. Pattern Recogn. Lett. 138, 638–643 (2020)
Alakwaa, W., Nassef, M., Badr, A.: Lung cancer detection and classification with 3D convolutional neural network (3D-CNN). Lung Cancer 8(8), 409 (2017)
Chowdhury, M.E.H., et al.: Can AI help in screening viral and COVID-19 pneumonia? IEEE Access 8, 132665–132676 (2020)
Das, N.N., Kumar, N., Kaur, M., Kumar, V., Singh, D.: Automated deep transfer learning-based approach for detection of COVID-19 infection in chest X-rays. IRBM 43, 114–119 (2020)
Farooq, M., Hafeez, A.: COVID-ResNet: a deep learning framework for screening of covid19 from radiographs. arXiv preprint arXiv:2003.14395 (2020)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)
He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 630–645. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_38
Huang, C., et al.: Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 395(10223), 497–506 (2020)
Hussain, E., Hasan, M., Rahman, M.A., Lee, I., Tamanna, T., Parvez, M.Z.: CoroDet: a deep learning based classification for COVID-19 detection using chest X-ray images. Chaos Solitons Fractals 142, 110495 (2021)
Jarrom, D., et al.: Effectiveness of tests to detect the presence of SARS-COV-2 virus, and antibodies to SARS-COV-2, to inform COVID-19 diagnosis: a rapid systematic review. BMJ Evid.-Based Med. 27, 33–45 (2020)
Khan, A.I., Shah, J.L., Bhat, M.M.: CoroNet: a deep neural network for detection and diagnosis of COVID-19 from chest X-ray images. Comput. Meth. Prog. Biomed. 196, 105581 (2020)
Kooi, T., et al.: Large scale deep learning for computer aided detection of mammographic lesions. Med. Image Anal. 35, 303–312 (2017)
Li, Q., et al.: Early transmission dynamics in Wuhan, China, of novel coronavirus–infected pneumonia. N. Engl. J. Med. (2020)
Narin, A., Kaya, C., Pamuk, Z.: Automatic detection of coronavirus disease (COVID-19) using X-ray images and deep convolutional neural networks. Pattern Anal. Appl. 24(3), 1207–1220 (2021). https://doi.org/10.1007/s10044-021-00984-y
Ozturk, T., Talo, M., Yildirim, E.A., Baloglu, U.B., Yildirim, O., Acharya, U.R.: Automated detection of COVID-19 cases using deep neural networks with X-ray images. Comput. Biol. Med. 121, 103792 (2020)
Pereira, S., Pinto, A., Alves, V., Silva, C.A.: Brain tumor segmentation using convolutional neural networks in MRI images. IEEE Trans. Med. Imaging 35(5), 1240–1251 (2016)
Rahman, T., et al.: Exploring the effect of image enhancement techniques on COVID-19 detection using chest X-ray images. Comput. Biol. Med. 132, 104319 (2021)
Ramdas, K., Darzi, A., Jain, S.: ‘Test, re-test, re-test’: using inaccurate tests to greatly increase the accuracy of COVID-19 testing. Nat. Med. 26(6), 810–811 (2020)
Shin, H.C., et al.: Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning. IEEE Trans. Med. Imaging 35(5), 1285–1298 (2016)
Wang, L., Lin, Z.Q., Wong, A.: COVID-net: a tailored deep convolutional neural network design for detection of COVID-19 cases from chest X-ray images. Sci. Rep. 10(1), 1–12 (2020)
Yosinski, J., Clune, J., Bengio, Y., Lipson, H.: How transferable are features in deep neural networks? arXiv preprint arXiv:1411.1792 (2014)
Young, B.E., et al.: Epidemiologic features and clinical course of patients infected with SARS-COV-2 in Singapore. JAMA 323(15), 1488–1494 (2020)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Rakhymzhan, T., Zarrin, J., Maktab-Dar-Oghaz, M., Saheer, L.B. (2022). Deep Convolutional Neural Networks for COVID-19 Detection from Chest X-Ray Images Using ResNetV2. In: Arai, K. (eds) Intelligent Computing. SAI 2022. Lecture Notes in Networks and Systems, vol 507. Springer, Cham. https://doi.org/10.1007/978-3-031-10464-0_8
Download citation
DOI: https://doi.org/10.1007/978-3-031-10464-0_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-10463-3
Online ISBN: 978-3-031-10464-0
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)