Skip to main content

Protecting Privacy Using Low-Cost Data Diodes and Strong Cryptography

  • Conference paper
  • First Online:
Intelligent Computing (SAI 2022)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 508))

Included in the following conference series:

  • 656 Accesses

Abstract

Compromised near-body electronic devices, like an eye tracker or a brain-computer interface, can leak private, highly sensitive biometric or medical data. Such data must be protected at all costs to avoid mass-surveillance and hacking attempts. We review the current, dire state of network security caused by complex protocols, closed-source software and proprietary hardware. To tackle the issue, we discuss a concept that protects privacy by combining three elements: data diodes, strong encryption and true random number generators. For each element, we suggest low-complexity algorithms and low-cost hardware solutions that can be implemented using off-the-shelf components. Already a basic data diode can establish a strong barrier against hacking attempts. A carefully designed, shielded and monitored system combining data diodes and strong encryption can make most levels of attack infeasible.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The HCPL-7723 chip is approximately ten times more expensive than the 6N136, but still very affordable compared to commercial data diode solutions.

References

  1. Adrian, D., et al.: Imperfect forward secrecy: how Diffie-Hellman fails in practice. In: Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security, pp. 5–17 (2015)

    Google Scholar 

  2. Albert, R., Patney, A., Luebke, D., Kim, J.: Latency requirements for foveated rendering in virtual reality. ACM Trans. Appl. Perception (TAP) 14(4), 25 (2017)

    Google Scholar 

  3. Anderson, R.J., Petitcolas, F.A.P.: On the limits of steganography. IEEE J. Sel. Areas Commun. 16(4), 474–481 (1998)

    Article  Google Scholar 

  4. Armknecht, F., Gagliardoni, T., Katzenbeisser, S., Peter, A.: General impossibility of group homomorphic encryption in the quantum world. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 556–573. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54631-0_32

    Chapter  Google Scholar 

  5. Becker, G.T., Regazzoni, F., Paar, C., Burleson, W.P.: Stealthy dopant-level hardware trojans. In: Bertoni, G., Coron, J.-S. (eds.) CHES 2013. LNCS, vol. 8086, pp. 197–214. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40349-1_12

    Chapter  Google Scholar 

  6. Benalcazar, D., Perez, C., Bastias, D., Bowyer, K.: Iris recognition: comparing visible-light lateral and frontal illumination to NIR frontal illumination. In: 2019 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 867–876. IEEE (2019)

    Google Scholar 

  7. Bernstein, D.J., Lange, T.: Post-quantum cryptography-dealing with the fallout of physics success. IACR Cryptology ePrint Archive, 2017:314 (2017)

    Google Scholar 

  8. Biham, E., Neumann, L.: Breaking the Bluetooth pairing – the fixed coordinate invalid curve attack. In: Paterson, K.G., Stebila, D. (eds.) SAC 2019. LNCS, vol. 11959, pp. 250–273. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-38471-5_11

    Chapter  Google Scholar 

  9. Campbell, P., Cheetham, J.: OneRNG: An open hardware random number generator (2014). https://onerng.info. Accessed 19 Jan 2020

  10. Chang, F., Onohara, K., Mizuochi, T.: Forward error correction for 100 g transport networks. IEEE Commun. Mag. 48(3), S48–S55 (2010)

    Article  Google Scholar 

  11. Cohen, D., Schläpfer, U., Ahlfors, S., Hämäläinen, M., Halgren, E.: New six-layer magnetically-shielded room for MEG. In: Proceedings of the 13th International Conference on Biomagnetism, pp. 919–921. VDE Verlag, Jena, Germany (2002)

    Google Scholar 

  12. Microsoft Corporation. Hololens technical specifications. https://www.microsoft.com/en-us/hololens/hardware. Accessed 15 Jan 2020

  13. Crawford, T.J., Higham, S., Mayes, J., Dale, M., Shaunak, S., Lekwuwa, G.: The role of working memory and attentional disengagement on inhibitory control: effects of aging and Alzheimer’s disease. Age 35(5), 1637–1650 (2013)

    Article  Google Scholar 

  14. Daemen, J., Rijmen, V.: Aes proposal: Rijndael (1999)

    Google Scholar 

  15. Daemen, J., Rijmen, V.: The Design of Rijndael: AES-The Advanced Encryption Standard. Springer, Heidelberg (2013)

    Google Scholar 

  16. Daugman, J.: The importance of being random: statistical principles of iris recognition. Pattern Recogn. 36(2), 279–291 (2003)

    Article  Google Scholar 

  17. Daugman, J.: Probing the uniqueness and randomness of iriscodes: results from 200 billion iris pair comparisons. Proc. IEEE 94(11), 1927–1935 (2006)

    Article  Google Scholar 

  18. Dietz, P., Yerazunis, W., Leigh, D.: Very low-cost sensing and communication using bidirectional LEDs. In: Dey, A.K., Schmidt, A., McCarthy, J.F. (eds.) UbiComp 2003. LNCS, vol. 2864, pp. 175–191. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-39653-6_14

    Chapter  Google Scholar 

  19. Dodis, Y., Spencer, J.: On the (non) universality of the one-time pad. In: The 43rd Annual IEEE Symposium on Foundations of Computer Science 2002, Proceedings, pp. 376–385. IEEE (2002)

    Google Scholar 

  20. Durumeric, Z., et al.: The matter of heartbleed. In: Proceedings of the 2014 Conference on Internet Measurement Conference, pp. 475–488. ACM (2014)

    Google Scholar 

  21. Beware the eye spies. Sci. Am. 310 (2014)

    Google Scholar 

  22. Fluhrer, S., Mantin, I., Shamir, A.: Weaknesses in the key scheduling algorithm of RC4. In: Vaudenay, S., Youssef, A.M. (eds.) SAC 2001. LNCS, vol. 2259, pp. 1–24. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45537-X_1

    Chapter  MATH  Google Scholar 

  23. Greenwald, G., MacAskill, E., Poitras, L., Ackerman, S., Rushe, D.: Microsoft handed the NSA access to encrypted messages. The Guardian, 12 (2013)

    Google Scholar 

  24. Guri, M.: AIR-FI: generating covert wi-fi signals from air-gapped computers. arXiv preprint arXiv:2012.06884 (2020)

  25. Guri, M., Elovici, Y.: Bridgeware: the air-gap malware. Commun. ACM 61(4), 74–82 (2018)

    Article  Google Scholar 

  26. Guri, M., Zadov, B., Elovici, Y.: ODINI: escaping sensitive data from faraday-caged, air-gapped computers via magnetic fields. IEEE Trans. Inf. Forensics Secur. 15, 1190–1203 (2019)

    Article  Google Scholar 

  27. Honggang, L.: Research on packet loss issues in unidirectional transmission. J. Comput. 8(10), 2664–2671 (2013)

    Google Scholar 

  28. Hughes, J.P., Gupta, Y.: “The collector”: A gigabit true random number generator using image sensor noise (2019)

    Google Scholar 

  29. Kadhim, I.J., Premaratne, P., Vial, P.J., Halloran, B.: Comprehensive survey of image steganography: techniques, evaluations, and trends in future research. Neurocomputing 335, 299–326 (2019)

    Article  Google Scholar 

  30. Keizer, G.: NSA helped with windows 7 development. Computerworld, November 2009

    Google Scholar 

  31. Krause, A.F., Essig, K.: Libretracker: a free and open-source eyetracking software for head-mounted eyetrackers. In: 20th European Conference on Eye Movements, (ECEM 2019), p. 391 (2019)

    Google Scholar 

  32. Landau, S.: Highlights from making sense of Snowden, part II: what’s significant in the NSA revelations. IEEE Secur. Privacy 12(1), 62–64 (2014)

    Article  Google Scholar 

  33. Larabel, M.: Some AMD CPUs might lose RdRand randomness following suspend/resume (2019). https://www.phoronix.com/scan.php?page=news_item&px=AMD-CPUs-RdRand-Suspend. Accessed 19 Jan 2020

  34. Liebling, D.J., Preibusch, S.: Privacy considerations for a pervasive eye tracking world. In: Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing: Adjunct Publication, pp. 1169–1177 (2014)

    Google Scholar 

  35. Mehrotra, H., Vatsa, M., Singh, R., Majhi, B.: Does iris change over time? PLoS ONE 8(11), e78333 (2013)

    Article  Google Scholar 

  36. Mitchell, J.C., He, C.: Security analysis and improvements for IEEE 802.11 i. In: The 12th Annual Network and Distributed System Security Symposium (NDSS 2005) Stanford University, Stanford, pp. 90–110. Citeseer (2005)

    Google Scholar 

  37. Miyazaki, E., Itami, S., Araki, T.: Using a light-emitting diode as a high-speed, wavelength selective photodetector. Rev. Sci. Instrum. 69(11), 3751–3754 (1998)

    Article  Google Scholar 

  38. Moschner, C., Baloh, R.W.: Age-related changes in visual tracking. J. Gerontol. 49(5), M235–M238 (1994)

    Google Scholar 

  39. Naatz, L.C.: Literature review of optocouplers, their polymer components and current applications (2020)

    Google Scholar 

  40. Okhravi, H., Sheldon, F.T.: Data diodes in support of trustworthy cyber infrastructure. In: Proceedings of the Sixth Annual Workshop on Cyber Security and Information Intelligence Research, p. 23. ACM (2010)

    Google Scholar 

  41. Ottela, M.: Tinfoil chat: Instant messaging with endpoint security (2017). https://github.com/maqp/tfc/wiki. Accessed 29 Jan 2020

  42. Park, B.K., et al.: Practical true random number generator using CMOS image sensor dark noise. IEEE Access 7, 91407–91413 (2019)

    Article  Google Scholar 

  43. Patney, A., et al.: Towards foveated rendering for gaze-tracked virtual reality. ACM Trans. Graph. (TOG) 35(6), 179 (2016)

    Article  MathSciNet  Google Scholar 

  44. Pierce, K., et al.: Eye tracking reveals abnormal visual preference for geometric images as an early biomarker of an autism spectrum disorder subtype associated with increased symptom severity. Biol. Psychiatry 79(8), 657–666 (2016)

    Article  Google Scholar 

  45. Piumsomboon, T., Lee, G., Lindeman, R.W., Billinghurst, M.: Exploring natural eye-gaze-based interaction for immersive virtual reality. In: 2017 IEEE Symposium on 3D User Interfaces (3DUI), pp. 36–39. IEEE (2017)

    Google Scholar 

  46. Sanches, P.: (pseudonym). Low cost data diode (2016). https://imgur.com/a/5Cv19. Accessed 18 Jan 2020

  47. Raub, D., Steinwandt, R., Müller-Quade, J.: On the security and composability of the one time pad. In: Vojtáš, P., Bieliková, M., Charron-Bost, B., Sýkora, O. (eds.) SOFSEM 2005. LNCS, vol. 3381, pp. 288–297. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-30577-4_32

    Chapter  MATH  Google Scholar 

  48. Renner, P., Pfeiffer, T.: Attention guiding techniques using peripheral vision and eye tracking for feedback in augmented-reality-based assistance systems. In: 2017 IEEE Symposium on 3D User Interfaces (3DUI), pp. 186–194. IEEE (2017)

    Google Scholar 

  49. Rieger, G., Cash, B.M., Merrill, S.M., Jones-Rounds, J., Dharmavaram, S.M., Savin-Williams, R.C.: Sexual arousal: the correspondence of eyes and genitals. Biol. Psychol. 104, 56–64 (2015)

    Article  Google Scholar 

  50. Rieger, G., Savin-Williams, R.C.: The eyes have it: sex and sexual orientation differences in pupil dilation patterns. PloS One 7(8), e40256 (2012)

    Article  Google Scholar 

  51. Rupp, H.A., Wallen, K.: Sex differences in viewing sexual stimuli: an eye-tracking study in men and women. Hormones Behavior 51(4), 524–533 (2007)

    Article  Google Scholar 

  52. Salter, J.: How a months-old AMD microcode bug destroyed my weekend: AMD shipped Ryzen 3000 with a serious microcode bug in its random number generator (2019). https://arstechnica.com/gadgets/2019/10/how-a-months-old-amd-microcode-bug-destroyed-my-weekend/. Accessed 19 Jan 2020

  53. Schneier, B.: Cryptographic design vulnerabilities. Computer 9, 29–33 (1998)

    Article  Google Scholar 

  54. Seward, R.: Make your own true random number generator 2 (2014). http://robseward.com/misc/RNG2/. Accessed 19 Jan 2020

  55. Shannon, C.E.: Communication theory of secrecy systems. Bell Syst. Tech. J. 28(4), 656–715 (1949)

    Article  MathSciNet  MATH  Google Scholar 

  56. Shin, Y., Meneely, A., Williams, L., Osborne, J.A.: Evaluating complexity, code churn, and developer activity metrics as indicators of software vulnerabilities. IEEE Trans. Softw. Eng. 37(6), 772–787 (2010)

    Article  Google Scholar 

  57. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring. In: Proceedings 35th Annual Symposium on Foundations of Computer Science, pp. 124–134. IEEE (1994)

    Google Scholar 

  58. Shumow, D., Ferguson, N.: On the possibility of a back door in the NIST SP800-90 dual Ec Prng. In: Proceedings of the Crypto, vol. 7 (2007)

    Google Scholar 

  59. Spooner, J.W., Sakala, S.M., Baloh, R.W.: Effect of aging on eye tracking. Arch. Neurol. 37(9), 575–576 (1980)

    Article  Google Scholar 

  60. Sravani, M.M., Ananiah Durai, S.: Side-channel attacks on cryptographic devices and their countermeasures—a review. In: Tiwari, S., Trivedi, M.C., Mishra, K.K., Misra, A.K., Kumar, K.K. (eds.) Smart Innovations in Communication and Computational Sciences. AISC, vol. 851, pp. 209–226. Springer, Singapore (2019). https://doi.org/10.1007/978-981-13-2414-7_21

    Chapter  Google Scholar 

  61. Stevens, M.W.: An implementation of an optical data diode. Technical report, DSTO Electronics and Surveillance Research Laboratory, Salisbury, South Australia (1999)

    Google Scholar 

  62. Stipčević, M.: Fast nondeterministic random bit generator based on weakly correlated physical events. Rev. Sci. Instrum. 75(11), 4442–4449 (2004)

    Article  Google Scholar 

  63. Stipčević, M., Koç, Ç.K.: True random number generators. In: Koç, Ç.K. (ed.) Open Problems in Mathematics and Computational Science, pp. 275–315. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10683-0_12

    Chapter  Google Scholar 

  64. Sunar, B., Martin, W.J., Stinson, D.R.: A provably secure true random number generator with built-in tolerance to active attacks. IEEE Trans. Comput. 56(1), 109–119 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  65. Tews, E., Beck, M.: Practical attacks against WEP and WPA. In: Proceedings of the Second ACM Conference on Wireless Network Security, pp. 79–86. ACM (2009)

    Google Scholar 

  66. Theuwissen, A.J.P.: CMOS image sensors: state-of-the-art. Solid-State Electron. 52(9), 1401–1406 (2008)

    Article  Google Scholar 

  67. Tian, H., Fowler, B., Gamal, A.E.: Analysis of temporal noise in CMOS photodiode active pixel sensor. IEEE J. Solid-State Circuits 36(1), 92–101 (2001)

    Article  Google Scholar 

  68. Toufik, N., Pélanchon, F., Mialhe, P.: Degradation of junction parameters of an electrically stressed npn bipolar transistor. Act. Passive Electron. Compon. 24(3), 155–163 (2001)

    Article  Google Scholar 

  69. Vanhoef, M., Piessens, F.: Key reinstallation attacks: forcing nonce reuse in WPA2. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, pp. 1313–1328. ACM (2017)

    Google Scholar 

  70. Vanhoef, M., Piessens, F.: Release the kraken: new KRACKs in the 802.11 standard. In: Proceedings of the 25th ACM Conference on Computer and Communications Security (CCS). ACM (2018)

    Google Scholar 

  71. Vanhoef, M., Ronen, E.: Dragonblood: analyzing the dragonfly handshake of WPA3 and EAP-PWD. In: Proceedings of the 2020 IEEE Symposium on Security and Privacy-S&P 2020. IEEE (2020)

    Google Scholar 

  72. Vernam, G.: Secret signaling systems. US Patent 1919

    Google Scholar 

  73. von Neumann, J.: Various techniques used in connection with random digits. In: Householder, A.S., Forsythe, G.E., Germond, H.H. (eds.) Monte Carlo Method, volume 12 of National Bureau of Standards Applied Mathematics Series, chapter 13, pp. 36–38. US Government Printing Office, Washington, DC (1951)

    Google Scholar 

  74. Warren, P.: An entropy generator using SDR peripherals, including RTL-SDR and BladeRF (2014). https://github.com/pwarren/rtl-entropy. Accessed 19 Jan 2020

  75. Wildes, R.P.: Iris recognition: an emerging biometric technology. Proc. IEEE 85(9), 1348–1363 (1997)

    Article  Google Scholar 

  76. Wu, T.D., et al.: The secure remote password protocol. In: NDSS, vol. 98, pp. 97–111. Citeseer (1998)

    Google Scholar 

  77. Zaba, S.: The NSAKEY in microsoft’s crypto API: facts, fiction and speculation. Inf. Secur. Tech. Rep. 4(4), 40–46 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André Frank Krause .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Krause, A.F., Essig, K. (2022). Protecting Privacy Using Low-Cost Data Diodes and Strong Cryptography. In: Arai, K. (eds) Intelligent Computing. SAI 2022. Lecture Notes in Networks and Systems, vol 508. Springer, Cham. https://doi.org/10.1007/978-3-031-10467-1_47

Download citation

Publish with us

Policies and ethics