Skip to main content

Full Waveform Inversion of the Scattered Component of the Wavefield: Resolution Analysis

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2022 (ICCSA 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13375))

Included in the following conference series:

  • 733 Accesses

Abstract

The paper considers the influence of the scattered component of the wavefield on the full waveform inversion results. Utilizing the one step of the quasi-Newton method, we demonstrate that scattered wavefields bring helpful information in the context of the solution of the inverse dynamical problem. Theoretically, usage of the scattered waves should increase the resolution of the method. For different scenarios, the contribution of scattered waves is investigated numerically. We investigate the influence of scattered components only by using singular value decomposition of the linearized inverse problem operator. The numerical experiments are performed for the well-known Marmousi2 model.

Supported by RSF grant 21-71-20002.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Lailly, P.: The seismic inverse problem as a sequence of before stack migrations. In: Bednar, J.B., Robinson, E., Weglein, A. (eds.) Conference on Inverse Scattering-Theory and Application, pp. 206–220. SIAM, Philadelphia (1983)

    Google Scholar 

  2. Tarantola, A.: Inversion of seismic reflection data in the acoustic approximation. Geophysics 49(8), 1140–1395 (1984). https://doi.org/10.1190/1.1441754

    Article  Google Scholar 

  3. Virieux, J., Operto, S.: An overview of full-waveform inversion in exploration geophysics. Geophysics 78, WCC1–WCC26 (2009). https://doi.org/10.1190/1.3238367

    Article  Google Scholar 

  4. Warner, M., et al.: Anisotropic 3D full-waveform inversion. Geophysics 78, R59–R80 (2013). https://doi.org/10.1190/geo2012-0338.1

    Article  Google Scholar 

  5. Pratt, R.G., Song, Z.M., Williamson, P.R., Warner, M.: Two-dimensional velocity model from wide-angle seismic data by wavefield inversion. Geophys. J. Int. 124(2), 323–340 (1996). https://doi.org/10.1111/j.1365-246X.1996.tb07023.x

    Article  Google Scholar 

  6. Shipp, R.M., Singh, S.C.: Two-dimensional full wavefield inversion of wide-aperture marine seismic streamer data. Geophys. J. Int. 151(2), 325–344 (2002). https://doi.org/10.1046/j.1365-246X.2002.01645.x

    Article  Google Scholar 

  7. Khaidukov, V., Landa, E., Moser, T.J.: Diffraction imaging by focusing-defocusing: An outlook on seismic superresolution. Geophysics 69(6), 1372–1570 (2004). https://doi.org/10.1190/1.1836821

    Article  Google Scholar 

  8. Dell, S., Abakumov, I., Znak, P., Gajewski, D., Kashtan, B., Ponomarenko, A.: On the role of diffractions in velocity model building: a full-waveform inversion example. Stud. Geophys. Geod. 63(4), 538–553 (2019). https://doi.org/10.1007/s11200-019-0733-6

    Article  Google Scholar 

  9. Martin, G.S., Wiley, R., Marfurt, K.J.: Marmousi2: an elastic upgrade for Marmousi. Lead. Edge 25(2), 156–166 (2006). https://doi.org/10.1190/1.2172306

    Article  Google Scholar 

  10. Grote, M., Sim, I. : Efficient PML for the wave equation. Report arXiv:1001.0319 (2010). https://arxiv.org/abs/1001.0319

  11. Protasov, M., Tcheverda, V.: True/preserving amplitude seismic imaging based on Gaussian beams application. In: SEG Technical Program Expanded Abstracts 2006, pp. 2126–2130 (2006). https://doi.org/10.1190/1.2369957

  12. Cheverda, V.A., Kostin, V.I.: R-pseudoinverses for compact operators in Hilbert spaces: existence and stability. J. Inverse Ill-Posed Probl. 3(2), 131–148 (1995). https://doi.org/10.1515/jiip.1995.3.2.131

    Article  MathSciNet  MATH  Google Scholar 

  13. Pratt, R.G., Shin, Ch., Hick, G.J.: Gauss-Newton and full Newton methods in frequency-space seismic waveform inversion. Geophys. J. Int. 133(2), 341–362 (1998). https://doi.org/10.1046/j.1365-246X.1998.00498.x

    Article  Google Scholar 

  14. Gadylshin, K., Bakulin, A., Dmitriev, M., Golikov, P., Neklyudov, D., Tcheverda, V.: Effect of free-surface related multiples on near surface velocity reconstruction with acoustic frequency domain. In: Proceedings 76th EAGE Conference and Exhibition 2014, LNCS, vol. 2014, pp. 1–5. European Association of Geoscientists & Engineers (2014). https://doi.org/10.3997/2214-4609.20141410

  15. Hernandez, V., Roman, J.E., Tomas, A.: Parallel Arnoldi Eigensolvers with enhanced scalability via global communications rearrangement. Parallel Comput. 33(7–8), 521–540 (2007). https://doi.org/10.1016/j.parco.2007.04.004

    Article  MathSciNet  Google Scholar 

  16. Sirgue, L., Pratt, R.G.: Efficient waveform inversion and imaging: a strategy for selecting temporal frequencies. Geophysics 69(1), 231–248 (2004). https://doi.org/10.1190/1.1649391

    Article  Google Scholar 

Download references

Acknowledgements

The work is supported by RSF grant 21-71-20002. The numerical results of the work were obtained using computational resources of Peter the Great Saint-Petersburg Polytechnic University Supercomputing Center (scc.spbstu.ru).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kirill Gadylshin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gadylshin, K., Protasov, M. (2022). Full Waveform Inversion of the Scattered Component of the Wavefield: Resolution Analysis. In: Gervasi, O., Murgante, B., Hendrix, E.M.T., Taniar, D., Apduhan, B.O. (eds) Computational Science and Its Applications – ICCSA 2022. ICCSA 2022. Lecture Notes in Computer Science, vol 13375. Springer, Cham. https://doi.org/10.1007/978-3-031-10522-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-10522-7_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-10521-0

  • Online ISBN: 978-3-031-10522-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics