Skip to main content

Dispersion Analysis of Smoothed Particle Hydrodynamics to Study Convergence and Numerical Phenomena at Coarse Resolution

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2022 (ICCSA 2022)

Abstract

The Smoothed Particle Hydrodynamics (SPH) method is a meshless Lagrangian method widely used in continuum mechanics simulation. Despite its wide application, theoretical issues of SPH approximation, stability, and convergence are among the unsolved problems of computational mathematics. In this paper, we present the application of dispersion analysis to the SPH approximation of one-dimensional gas dynamics equations to study numerical phenomena that appeared in practice. We confirmed that SPH converges only if the number of particles per wavelength increases while smoothing length decreases. At the same time, reduction of the smoothing length when keeping the number of particles in the kernel fixed (typical convergence results for finite differences and finite elements) does not guarantee the convergence of the numerical solution to the analytical one. We indicate the particular regimes with pronounced irreducible numerical dispersion. For coarse resolution, our theoretical findings are confirmed in simulations.

V.L. did the dispersion analysis under the support of Russian Science Foundation grant no. 21-71-20003, O.S. performed numerical experiments, and T.M. did the asymptotic analysis; O.S. and T.M. work were founded by Russian Science Foundation grant no 21-19-00429, S.A. visualized the results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ainsworth, M.: Discrete dispersion relation for HP-version finite element approximation at high wave number. SIAM J. Numer. Anal. 42(2), 553–575 (2004)

    Article  MathSciNet  Google Scholar 

  2. Ainsworth, M.: Dispersive and dissipative behaviour of high order discontinuous Galerkin finite element methods. J. Comput. Phys. 198(1), 106–130 (2004)

    Article  MathSciNet  Google Scholar 

  3. Ainsworth, M., Wajid, H.A.: Dispersive and dissipative behavior of the spectral element method. SIAM J. Numer. Anal. 47(5), 3910–3937 (2009)

    Article  MathSciNet  Google Scholar 

  4. Cha, S.-H., Whitworth, A.P.: Implementations and tests of Godunov-type particle hydrodynamics. Mon. Not. R. Astron. Soc. 340, 73–90 (2003)

    Article  Google Scholar 

  5. Cohen, G. (ed.): Metodes numeriques d’ordre eleve pour les ondes en regime transitoire. INRIA (1994). (in French)

    Google Scholar 

  6. Dehnen, W., Aly, H.: Improving convergence in smoothed particle hydrodynamics simulations without pairing instability. Mon. Not. R. Astron. Soc. 425, 1068–1082 (2012)

    Article  Google Scholar 

  7. Gingold, R.A., Monaghan, J.J.: Smoothed particle hydrodynamics: theory and application to non-spherical stars. Mon. Not. R. Astron. Soc. 181, 375–89 (1977)

    Article  Google Scholar 

  8. Grigoryev, V., Stoyanovskaya, O., Snytnikov, N.: Supercomputer model of dynamical dusty gas with intense momentum transfer between phases based on OpenFPM library. J. Phys: Conf. Ser. 2099, 012056 (2021). https://doi.org/10.1088/1742-6596/2099/1/012056

    Article  Google Scholar 

  9. Hubber, D.A., Rosotti, G.P., Booth, R.A.: GANDALF - Graphical Astrophysics code for N-body dynamics and Lagrangian fluids. Mon. Not. R. Astron. Soc. 473, 1603–1632 (2018)

    Article  Google Scholar 

  10. Lisitsa, V.: Dispersion analysis of discontinuous Galerkin method on triangular mesh for elastic wave equation. Appl. Math. Model. 40, 5077–5095 (2016). https://doi.org/10.1016/j.apm.2015.12.039

    Article  MathSciNet  MATH  Google Scholar 

  11. Liu, Y.: Optimal staggered-grid finite-difference schemes based on least-squares for wave equation modelling. Geophys. J. Int. 197(2), 1033–1047 (2014)

    Article  Google Scholar 

  12. Lucy, L.B.: A numerical approach to the testing of the fission hypothesis. Astron. J. 82, 1013–24 (1977)

    Article  Google Scholar 

  13. Mazzieri, I., Rapetti, F.: Dispersion analysis of triangle-based spectral element methods for elastic wave propagation. Numer. Algorithms 60(4), 631–650 (2012)

    Article  MathSciNet  Google Scholar 

  14. Monaghan, J.J.: On the problem of penetration in particle methods. J. Comput. Phys. 82(1), 1–15 (1989)

    Article  Google Scholar 

  15. Monaghan, J.J.: Smoothed particle hydrodynamics. Rep. Prog. Phys. 68, 1703–1759 (2005). https://doi.org/10.1088/0034-4885/68/8/R01

    Article  MathSciNet  MATH  Google Scholar 

  16. Morris, J.P.: A study of the stability properties of smooth particle hydrodynamics. Publ. Astron. Soc. Austral. 13(1), 97–102 (1996)

    Article  Google Scholar 

  17. Mulder, W.A.: Spurious modes in finite-element discretizations of the wave equation may not be all that bad. Appl. Numer. Math. 30(4), 425–445 (1999)

    Article  MathSciNet  Google Scholar 

  18. Price, D.J.: Smoothed particle hydrodynamics and magnetohydrodynamics. J. Comput. Phys. 231(3), 759–794 (2012)

    Article  MathSciNet  Google Scholar 

  19. Price, D., et al.: Phantom: a smoothed particle hydrodynamics and magnetohydrodynamics code for astrophysics. Publ. Astron. Soc. Austral. 35, e031 (2020)

    Article  Google Scholar 

  20. Rasio, F.A.: Particle methods in astrophysical fluid dynamics. Prog. Theor. Phys. Suppl. 138, 609–621 (2000)

    Article  Google Scholar 

  21. Quinlan, N.J., Basa, M., Lastiwka, M.: Truncation error in mesh-free particle methods. International journal for numerical methods in engineering Int. J. Numer. Meth. Eng. 66, 2064–2085 (2006)

    Google Scholar 

  22. Springel, V.: The cosmological simulation code gadget-2. Mon. Not. R. Astron. Soc. 364(4), 1105–1134 (2005)

    Article  Google Scholar 

  23. Stoyanovskaya, O.P., Glushko, T.A., Snytnikov, N.V., Snytnikov, V.N.: Two-fluid dusty gas in smoothed particle hydrodynamics: fast and implicit algorithm for stiff linear drag. Astron. Comp. 25, 25–37 (2018)

    Article  Google Scholar 

  24. Stoyanovskaya, O.P., Davydov, M., Arendarenko, M., Isaenko, E., Markelova, T., Snytnikov, V.: Fast method to simulate dynamics of two-phase medium with intense interaction between phases by smoothed particle hydrodynamics: gas-dust mixture with polydisperse particles, linear drag, one-dimensional tests. J. Comp. Phys. 430, 110035 (2021)

    Article  MathSciNet  Google Scholar 

  25. Vacondio, R., et al.: Grand challenges for smoothed particle hydrodynamics numerical schemes. Comput. Particle Mech. 8(3), 575–588 (2020). https://doi.org/10.1007/s40571-020-00354-1

  26. Zhang, C., et al.: SPHinXsys: an open-source meshless, multi-resolution and multiphysics library. Softw. Impacts 6, 100033 (2020)

    Article  Google Scholar 

  27. Zhu, Q., Hernquist, L., Li., Y.: Numerical convergence in smoothed particle hydrodynamics. Astrophys. J. 800, Number 1 (2015)

    Google Scholar 

  28. LS-DYNA Homepage. https://www.lstc.com/products/ls-dyna. Accessed 2 Mar 2022

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vadim Lisitsa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Stoyanovskaya, O., Lisitsa, V., Anoshin, S., Markelova, T. (2022). Dispersion Analysis of Smoothed Particle Hydrodynamics to Study Convergence and Numerical Phenomena at Coarse Resolution. In: Gervasi, O., Murgante, B., Hendrix, E.M.T., Taniar, D., Apduhan, B.O. (eds) Computational Science and Its Applications – ICCSA 2022. ICCSA 2022. Lecture Notes in Computer Science, vol 13375. Springer, Cham. https://doi.org/10.1007/978-3-031-10522-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-10522-7_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-10521-0

  • Online ISBN: 978-3-031-10522-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics