Skip to main content

Interval Approximation of the Discrete Helmholtz Propagator for the Radio-Wave Propagation Along the Earth’s Surface

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2022 (ICCSA 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13375))

Included in the following conference series:

  • 718 Accesses

Abstract

A new finite-difference approximation of the two-dimensional parabolic equation is proposed in this paper. The specifics of the tropospheric radio-wave propagation problem are taken into account. Rational approximation of the discrete in both dimensions propagation operator is considered. The method of rational interpolation is used instead of local Padé approximation. The results of numerical modeling confirm the advantages of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chebfun (2020). https://www.chebfun.org/

  2. Arnold, A., Ehrhardt, M.: Discrete transparent boundary conditions for wide angle parabolic equations in underwater acoustics. J. Comput. Phys. 145(2), 611–638 (1998)

    Article  MathSciNet  Google Scholar 

  3. Baker, G.A., Graves-Morris, P.: Pade Approximants, vol. 59. Cambridge University Press, New York (1996)

    Book  Google Scholar 

  4. Bonnafont, T., Douvenot, R., Chabory, A.: A local split-step wavelet method for the long range propagation simulation in 2D. Radio Sci. 56(2), 1–11 (2021)

    Article  Google Scholar 

  5. Collins, M.D.: A split-step Pade solution for the parabolic equation method. J. Acoust. Soc. Am. 93(4), 1736–1742 (1993)

    Article  Google Scholar 

  6. Fishman, L., McCoy, J.J.: Derivation and application of extended parabolic wave theories. I. The factorized Helmholtz equation. J. Math. Phys. 25(2), 285–296 (1984)

    Article  MathSciNet  Google Scholar 

  7. Lee, D., Schultz, M.H.: Numerical Ocean Acoustic Propagation in Three Dimensions. World Scientific, Singapore (1995)

    Book  Google Scholar 

  8. Leontovich, M.A., Fock, V.A.: Solution of the problem of propagation of electromagnetic waves along the earth’s surface by the method of parabolic equation. J. Phys. USSR 10(1), 13–23 (1946)

    MathSciNet  MATH  Google Scholar 

  9. Levy, M.F.: Parabolic Equation Methods for Electromagnetic Wave Propagation. The Institution of Electrical Engineers, Hertfordshire (2000)

    Book  Google Scholar 

  10. Ligny, L., El Ahdab, Z., Douvenot, R.: A phase correction for long distance propagation using split-step methods in non-rectangular domains. IEEE Antennas Wirel. Propag. Lett. 20(12), 2476–2480 (2021)

    Article  Google Scholar 

  11. Lytaev, M.S.: Python wave proragation library (2021). https://github.com/mikelytaev/wave-propagation

  12. Lytaev, M.S.: Automated selection of the computational parameters for the higher-order parabolic equation numerical methods. In: Gervasi, O., et al. (eds.) ICCSA 2020. LNCS, vol. 12249, pp. 296–311. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58799-4_22

    Chapter  Google Scholar 

  13. Lytaev, M.S.: Chebyshev-Type rational approximations of the one-way Helmholtz equation for solving a class of wave propagation problems. In: Paszynski, M., Kranzlmüller, D., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M.A. (eds.) ICCS 2021. LNCS, vol. 12742, pp. 422–435. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77961-0_35

    Chapter  Google Scholar 

  14. Lytaev, M.S.: An improved accuracy split-step Padé parabolic equation for tropospheric radio-wave propagation. In: Gervasi, O., et al. (eds.) ICCSA 2021. LNCS, vol. 12949, pp. 418–433. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-86653-2_31

    Chapter  Google Scholar 

  15. Lytaev, M.S.: Rational interpolation of the one-way Helmholtz propagator. J. Comput. Sci. 58, 101536 (2022)

    Article  Google Scholar 

  16. Lytaev, M.S.: Nonlocal boundary conditions for split-step Padé approximations of the Helmholtz equation with modified refractive index. IEEE Antennas Wirel. Propag. Lett. 17(8), 1561–1565 (2018)

    Article  Google Scholar 

  17. Lytaev, M.S.: Numerov-Pade scheme for the one-way Helmholtz equation in tropospheric radio-wave propagation. IEEE Antenna Wirel. Propag. Lett. 19(12), 2167–2171 (2020)

    Article  Google Scholar 

  18. Ozgun, O., et al.: PETOOL v2.0: parabolic equation toolbox with evaporation duct models and real environment data. Comput. Phys. Commun. 256, 107454 (2020)

    Article  MathSciNet  Google Scholar 

  19. Pachón, R., Gonnet, P., Van Deun, J.: Fast and stable rational interpolation in roots of unity and Chebyshev points. SIAM J. Numer. Anal. 50(3), 1713–1734 (2012)

    Article  MathSciNet  Google Scholar 

  20. Qin, H., Zhang, X.: Efficient modeling of radio wave propagation in tunnels for 5G and beyond using a split-step parabolic equation method. In: 2021 XXXIVth General Assembly and Scientific Symposium of the International Union of Radio Science (URSI GASS), pp. 1–3. IEEE

    Google Scholar 

  21. Sprouse, C.R., Awadallah, R.S.: An angle-dependent impedance boundary condition for the split-step parabolic equation method. IEEE Trans. Antennas Propag. 60(2), 964–970 (2012)

    Article  MathSciNet  Google Scholar 

  22. Telescope, R.E., et al.: Modeling in-ice radio propagation with parabolic equation methods. Phys. Rev. D 103(10), 103007 (2021)

    Article  Google Scholar 

  23. Yardim, C., Mukherjee, S., Compaleo, J.: Parabolic wave equation model for ducted environments. In: 2021 XXXIVth General Assembly and Scientific Symposium of the International Union of Radio Science (URSI GASS), pp. 1–4. IEEE

    Google Scholar 

  24. Zhou, H., Chabory, A., Douvenot, R.: A fast wavelet-to-wavelet propagation method for the simulation of long-range propagation in low troposphere. IEEE Trans. Antennas Propag. 70(3), 2137–2148 (2021)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikhail S. Lytaev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lytaev, M.S. (2022). Interval Approximation of the Discrete Helmholtz Propagator for the Radio-Wave Propagation Along the Earth’s Surface. In: Gervasi, O., Murgante, B., Hendrix, E.M.T., Taniar, D., Apduhan, B.O. (eds) Computational Science and Its Applications – ICCSA 2022. ICCSA 2022. Lecture Notes in Computer Science, vol 13375. Springer, Cham. https://doi.org/10.1007/978-3-031-10522-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-10522-7_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-10521-0

  • Online ISBN: 978-3-031-10522-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics