Skip to main content

Computerized Adaptive Testing: A Unified Approach Under Markov Decision Process

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2022 (ICCSA 2022)

Abstract

Markov Decision Process (MDP) is the most common planning framework in the literature for sequential decisions under probabilistic outcomes; MDPs also underlies the Reinforcement Learning (RL) theory. Computerized Adaptive Testing (CAT) is an assessment approach that selects questions one after another while conditioning each selection on the previous questions and answers. While MDP defines a well-posed optimization planning-problem, shortsighted score functions have solved the planning problem in CATs. Here, we show how MDP can model different formalisms for CAT, and, therefore, why the CAT community may benefit from MDP algorithms and theory. We also apply an MDP algorithm to solve a CAT, and we compare it against traditional score functions from CAT literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We consider the case when \(\mathcal {X}_{i}\) is enumerate for a briefer exposition.

  2. 2.

    In the multistage CAT, the examiner must choose a set of questions.

  3. 3.

    In a classification CAT, the examiner can estimate directly a category instead of a the latent trait \(\theta \).

References

  1. de Andrade, D.F., Tavares, H.R., da Cunha Valle, R.: Teoria da resposta ao item: conceitos e aplicações. ABE, São Paulo (2000)

    Google Scholar 

  2. Bertsekas, D.P., Tsitsiklis, J.N.: An analysis of stochastic shortest path problems. Math. Oper. Res. 16(3), 580–595 (1991)

    Article  MathSciNet  Google Scholar 

  3. Birnbaum, A.L.: Some latent trait models and their use in inferring an examinee’s ability. Statistical theories of mental test scores (1968)

    Google Scholar 

  4. Blind: Comprehensive empirical analysis of stop criteria in computerized adaptive testing. In: Submitted to International Conference on Computer Supported Education (CSEDU) (2021)

    Google Scholar 

  5. El-Alfy, E.S.M.: A reinforcement learning approach for sequential mastery testing, pp. 295–301 (2011)

    Google Scholar 

  6. Hambleton, R.K., Swaminathan, H.: Item Response Theory: Principles and Applications. Springer, Dordrecht (2013). https://doi.org/10.1007/978-94-017-1988-9

    Book  Google Scholar 

  7. Hoerger, M., Kurniawati, H.: An on-line POMDP solver for continuous observation spaces (2020)

    Google Scholar 

  8. Kreitzberg, C.B., Stocking, M.L., Swanson, L.: Computerized adaptive testing: principles and directions. Comput. Educ. 2(4), 319–329 (1978)

    Article  Google Scholar 

  9. van der Linden, W.J., Glas, C.A.: Computerized Adaptive Testing: Theory and Practice. Springer, Boston (2000). https://doi.org/10.1007/0-306-47531-6

    Book  Google Scholar 

  10. Lord, F.M.: Applications of Item Response Theory to Practical Testing Problems. Routledge, Abingdon (1980)

    Google Scholar 

  11. Magis, D., Yan, D., von Davier, A.A.: Computerized Adaptive and Multistage Testing with R: Using Packages CatR and MstR, 1st edn. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-69218-0

    Book  Google Scholar 

  12. Mausam, K.A.: Planning with Markov decision processes: an AI perspective. Synth. Lect. Artif. Intell. Mach. Learn. 6(1) (2012)

    Google Scholar 

  13. Minami, R., da Silva, V.F.: Shortest stochastic path with risk sensitive evaluation. In: Batyrshin, I., González Mendoza, M. (eds.) MICAI 2012. LNCS (LNAI), vol. 7629, pp. 371–382. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37807-2_32

    Chapter  Google Scholar 

  14. Morris, S.B., Bass, M., Howard, E., Neapolitan, R.E.: Stopping rules for computer adaptive testing when item banks have nonuniform information. Int. J. Test. 20(2), 146–168 (2020)

    Article  Google Scholar 

  15. Nurakhmetov, D.: Reinforcement learning applied to adaptive classification testing. In: Veldkamp, B.P., Sluijter, C. (eds.) Theoretical and Practical Advances in Computer-based Educational Measurement. MEMA, pp. 325–336. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-18480-3_17

    Chapter  Google Scholar 

  16. Sari, H.I., Raborn, A.: What information works best?: A comparison of routing methods. Appl. Psychol. Meas. 42(6), 499–515 (2018)

    Article  Google Scholar 

  17. Segall, D.O.: Computerized adaptive testing. Encyclopedia Soc. Meas. 1, 429–438 (2005)

    Article  Google Scholar 

  18. Spenassato, D., Bornia, A., Tezza, R.: Computerized adaptive testing: a review of research and technical characteristics. IEEE Lat. Am. Trans. 13(12), 3890–3898 (2015)

    Article  Google Scholar 

  19. Spenassato, D., Trierweiller, A.C., de Andrade, D.F., Bornia, A.C.: Testes adaptativos computadorizados aplicados em avaliaçoes educacionais. Revista Brasileira de Informática na Educação 24(02), 1 (2016)

    Article  Google Scholar 

  20. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press, Cambridge (1998)

    MATH  Google Scholar 

  21. Trevizan, F., Teichteil-Königsbuch, F., Thiébaux, S.: Efficient solutions for stochastic shortest path problems with dead ends. In: Proceedings of the Thirty-Third Conference on Uncertainty in Artificial Intelligence (UAI) (2017)

    Google Scholar 

  22. Wainer, H., Dorans, N.J., Flaugher, R., Green, B.F., Mislevy, R.J.: Computerized Adaptive Testing: A Primer. Routledge, Abington (2000)

    Google Scholar 

  23. Wang, C., Chang, H.H., Huebner, A.: Restrictive stochastic item selection methods in cognitive diagnostic computerized adaptive testing. J. Educ. Meas. 48(3), 255–273 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valdinei Freire .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gilavert, P., Freire, V. (2022). Computerized Adaptive Testing: A Unified Approach Under Markov Decision Process. In: Gervasi, O., Murgante, B., Hendrix, E.M.T., Taniar, D., Apduhan, B.O. (eds) Computational Science and Its Applications – ICCSA 2022. ICCSA 2022. Lecture Notes in Computer Science, vol 13375. Springer, Cham. https://doi.org/10.1007/978-3-031-10522-7_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-10522-7_40

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-10521-0

  • Online ISBN: 978-3-031-10522-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics