Skip to main content

A Modified SEIR Model: Stiffness Analysis and Application to the Diffusion of Fake News

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2022 (ICCSA 2022)

Abstract

In this work we propose a novel and alternative interpretation of the SEIR model, typically used in epidemiology to describe the spread of a disease in a given population, to describe the diffusion of fake information on the web and the consequent truth re-affirmation. We describe the corresponding system of ordinary differential equations, giving a proper definition of the involved parameters and, through a local linearization of the system, we calculate the so-called stiffness ratio, i.e. the ratio between the real parts of the largest and smallest eigenvalues of the Jacobian matrix of the linearized problem. A large gap in the spectrum of such a Jacobian matrix (i.e., a large stiffness ratio) makes the underlying differential problem stiff. So, we study and analyze the stiffness index of the SEIR model and, through selected numerical examples on real datasets, we show that the more the model is stiff, the faster is the transit of fake information in a given population.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. ITU Committed to connecting the world. https://www.itu.int/en/ITU-D/Statistics/Pages/stat/default.aspx. Accessed 31 Mar 2022

  2. World Bank Open Data. https://data.worldbank.org/. Accessed 31 Mar 2022

  3. Ansumali, S., Kaushal, S., Kumar, A., Prakash, M., Vidyasagar, M.: Modelling a pandemic with asymptomatic patients, impact of lockdown and herd immunity, with applications to SARS-CoV-2. Annu. Rev. Control. 50, 432–447 (2020). https://doi.org/10.1016/j.arcontrol.2020.10.003

    Article  MathSciNet  Google Scholar 

  4. Antonelli, E., Piccolomini, E., Zama, F.: Switched forced SEIRDV compartmental models to monitor COVID-19 spread and immunization in Italy. Infect. Dis. Model. 7, 1–15 (2022). https://doi.org/10.1016/j.idm.2021.11.001

    Article  Google Scholar 

  5. Berduygina, O., Vladimirova, T., Chernyaeva, E.: Trends in the spread of fake news in mass media. Media Watch 10(1), 122–132 (2019). https://doi.org/10.15655/mw/2019/v10i1/49561

  6. Brauer, F., Castillo-Chavez, C.: Mathematical Models in Population Biology and Epidemiology. TAM, vol. 40. Springer, New York (2012). https://doi.org/10.1007/978-1-4614-1686-9

  7. Brauer, F., van de Driessche, P., Wu, J.: Mathematical Epidemiology. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78911-6

  8. Brody, D., Meier, D.: How to model fake news. arXiv arXiv:1809.00964 (2018)

  9. Calvetti, D., Hoover, A., Rose, J., Somersalo, E.: Metapopulation network models for understanding, predicting, and managing the coronavirus disease COVID-19. Front. Phys. 8 (2020). https://doi.org/10.3389/fphy.2020.00261

  10. Chowell, G.: Fitting dynamic models to epidemic outbreaks with quantified uncertainty: a primer for parameter uncertainty, identifiability, and forecasts. Infect. Dis. Model. 2, 379–398 (2017). https://doi.org/10.1016/j.idm.2017.08.001

    Article  Google Scholar 

  11. Conte, D., D’Ambrosio, R., Paternoster, B.: Improved theta-methods for stochastic Volterra integral equations. Commun. Nonlinear Sci. Numer. Simul. 93 (2021). https://doi.org/10.1016/j.cnsns.2020.105528. Article no. 105528

  12. D’Ambrosio, R., Giordano, G., Mottola, S., Paternoster, B.: Stiffness analysis to predict the spread out of fake news. Future Internet 13, 222 (2021). https://doi.org/10.3309/fi13090222

    Article  Google Scholar 

  13. D’Ambrosio, R., Moccaldi, M., Paternoster, B.: Adapted numerical methods for advection-reaction-diffusion problems generating periodic wavefronts. Comput. Math. Appl. 74(5), 1029–1042 (2017). https://doi.org/10.1016/j.camwa.2017.04.023

    Article  MathSciNet  MATH  Google Scholar 

  14. D’Ambrosio, R., Paternoster, B.: Multivalue collocation methods free from order reduction. J. Comput. Appl. Math. 387 (2021). https://doi.org/10.1016/j.cam.2019.112515. Article no. 112515

  15. Dentith, M.: The problem of fake news. Public Reason 8(1–2), 65–79 (2016)

    Google Scholar 

  16. Dong, S., Deng, Y., Huang, Y.: SEIR model of rumor spreading in online social network with varying total population size. Commun. Theor. Phys. 68, 545–552 (2017). https://doi.org/10.1088/0253-6102/68/4/545

    Article  Google Scholar 

  17. D’Ulizia, A., Caschera, M., Ferri, F., Grifoni, P.: Fake news detection: a survey of evaluation datasets. PeerJ Comput. Sci. 7, e518 (2021). https://doi.org/10.7717/peerj-cs.518

    Article  Google Scholar 

  18. Franceschi, J., Pareschi, L.: Spreading of fake news, competence, and learning: kinetic modeling and numerical approximation. arXiv arXiv:2109.14087 (2021)

  19. Giordano, G., Mottola, S., Paternoster, B.: A short review of some mathematical methods to detect fake news. Int. J. Circuits Syst. Signal Process. 14, 255–265 (2020). https://doi.org/10.46300/9106.2020.14.37

  20. Godio, A., Pace, F., Vergnano, A.: SEIR modeling of the Italian epidemic of SARS-CoV-2 using computational swarm intelligence. Int. J. Environ. Res. Public Health 17(10), 3535 (2020). https://doi.org/10.3390/ijerph17103535

    Article  Google Scholar 

  21. Gopal, R., Chandrasekar, V.K., Lakshmanan, M.: Analysis-of-the-second-wave-of-Covid19-in-India-based-on-SEIR-model. Eur. Phys. J. (2022). https://doi.org/10.1140/epjs/s11734-022-00426-8

  22. Guo, B., Ding, Y., Sun, Y., Ma, S., Li, K., Yu, Z.: The mass, fake news, and cognition security. Front. Comp. Sci. 15(3), 1–13 (2020). https://doi.org/10.1007/s11704-020-9256-0

    Article  Google Scholar 

  23. Guo, B., Ding, Y., Yao, L., Liang, Y., Yu, Z.: The future of false information detection on social media: new perspectives and trends. ACM Comput. Surv. 53(4) (2020). https://doi.org/10.1145/3393880. Article no. 3393880

  24. Inthamoussou, F.A., Valenciaga, F., Núñez, S., Garelli, F.: Extended SEIR model for health policies assessment against the COVID-19 pandemic: the case of Argentina. J. Healthcare Inform. Res. 6(1), 91–111 (2021). https://doi.org/10.1007/s41666-021-00110-x

    Article  Google Scholar 

  25. Iwata, K., Miyakoshi, C.: A simulation on potential secondary spread of novel coronavirus in an exported country using a stochastic epidemic SEIR model. J. Clin. Med. 944(9) (2020). https://doi.org/10.3390/jcm9040944

  26. Kapantai, E., Christopoulou, A., Berberidis, C., Peristeras, V.: A systematic literature review on disinformation: toward a unified taxonomical framework. New Media Soc. 23(5), 1301–1326 (2021). https://doi.org/10.1177/1461444820959296

    Article  Google Scholar 

  27. Kelly, D.: Evaluating the news: (mis)perceptions of objectivity and credibility. Polit. Behav. 41(2), 445–471 (2018). https://doi.org/10.1007/s11109-018-9458-4

    Article  MathSciNet  Google Scholar 

  28. Kendall, D.G.: Deterministic and Stochastic Epidemics in Closed Populations, pp. 149–166. University of California Press (2020). https://doi.org/10.1525/9780520350717-011

  29. Kermack, W.O., McKendrick, A.G.: A contribution to the mathematical theory of epidemics. Proc. R. Soc. A 115, 700–721 (1927). https://doi.org/10.1098/rspa.1927.0118

  30. Khurana, P., Kumar, D.: Sir model for fake news spreading through Whatsapp. In: Proceedings of 3rd International Conference on Internet of Things and Connected Technologies (2018). https://doi.org/10.2139/ssrn.3166095

  31. Lambert, J.: Numerical Methods for Ordinary Differential Systems. Wiley, New York (1992)

    Google Scholar 

  32. Mahmoud, H.: A model for the spreading of fake news. J. Appl. Probab. 57(1), 332–342 (2020). https://doi.org/10.1017/jpr.2019.103

    Article  MathSciNet  MATH  Google Scholar 

  33. Murayama, T.: Dataset of fake news detection and fact verification: a survey. arXiv https://arxiv.org/pdf/2111.03299.pdf (2021)

  34. Murayama, T., Wakamiya, S., Aramaki, E., Kobayashi, R.: Modeling the spread of fake news on Twitter. PLoS ONE 16(4), e0250419 (2021). https://doi.org/10.1371/journal.pone.0250419

    Article  Google Scholar 

  35. O’Connor, C., Weatherall, J.: The Misinformation Age: How False Beliefs Spread. Yale University Press, London (2019)

    Book  Google Scholar 

  36. Peng, L., Yang, W., Zhang, D., Zhuge, C., Hong, L.: Epidemic analysis of COVID-19 in China by dynamical modeling (2020). https://www.medrxiv.org/content/10.1101/2020.02.16.20023465v1

  37. Pengpeng, S., Shengli, C., Peihua, F.: SEIR transmission dynamics model of 2019 nCoV coronavirus with considering the weak infectious ability and changes in latency duration (2020). https://doi.org/10.1101/2020.02.16.20023655

  38. Rider, S., Peters, M.A.: Post-truth, fake news: viral modernity and higher education. In: Peters, M.A., Rider, S., Hyvönen, M., Besley, T. (eds.) Post-Truth, Fake News, pp. 3–12. Springer, Singapore (2018). https://doi.org/10.1007/978-981-10-8013-5_1

    Chapter  Google Scholar 

  39. Piccolomini, E., Zama, F.: Monitoring Italian COVID-19 spread by a forced SEIRD model. PLoS ONE 15(8), e0237417 (2020). https://doi.org/10.1371/journal.pone.0237417

    Article  Google Scholar 

  40. Reyes-Menendez, A., Saura, J., Filipe, F.: The importance of behavioral data to identify online fake reviews for tourism businesses: a systematic review. PeerJ Comput. Sci. 5, e219 (2019). https://doi.org/10.7717/peerj-cs.219

    Article  Google Scholar 

  41. Robinson, M., Stilianakis, N.: A model for the emergence of drug resistance in the presence of asymptomatic infections. Math. Biosci. 243, 163–177 (2013). https://doi.org/10.1016/j.mbs.2013.03.003

    Article  MathSciNet  MATH  Google Scholar 

  42. Ross, R.: An application of the theory of probabilities to the study of a priori pathometry.-Part I. Proc. R. Soc. A A92, 204–230 (1916). https://doi.org/10.1098/rspa.1916.0007

  43. Ross, R., Hudson, H.: An application of the theory of probabilities to the study of a priori pathometry.- Part II. Proc. R. Soc. A A93, 212–225 (1917). https://doi.org/10.1098/rspa.1917.0014

  44. Ross, R., Hudson, H.: An application of the theory of probabilities to the study of a priori pathometry.- Part III. Proc. R. Soc. A A93, 225–240 (1917). https://doi.org/10.1098/rspa.1917.0015

  45. Savi, P., Savi, M., Borges, B.: A mathematical description of the dynamics of coronavirus disease 2019 (COVID-19): a case study of Brazil. Comput. Math. Methods Med. (2020). https://doi.org/10.1155/2020/9017157

    Article  Google Scholar 

  46. Shin, J., Jian, L., Driscoll, K., Bar, F.: The diffusion of misinformation on social media: temporal pattern, message, and source. Comput. Hum. Behav. 83, 278–287 (2018). https://doi.org/10.1016/j.chb.2018.02.008

    Article  Google Scholar 

  47. Tandoc, E.: The facts of fake news: a research review. Sociol. Compass 13(9) (2019). https://doi.org/10.1111/soc4.12724. Article no. e12724

  48. Tandoc, E., Lim, D., Ling, R.: Diffusion of disinformation: how social media users respond to fake news and why. Journalism 21(3), 381–398 (2020). https://doi.org/10.1177/1464884919868325

    Article  Google Scholar 

  49. Youssef, H., Alghamdi, N., Ezzat, M., El-Bary, A., Shawky, A.: A new dynamical modeling SEIR with global analysis applied to the real data of spreading COVID-19 in Saudi Arabia. Math. Biosci. Eng. 17, 7018–7044 (2020). https://doi.org/10.3934/mbe.2020362

    Article  MathSciNet  MATH  Google Scholar 

  50. Zannettou, S., Sirivianos, M., Blackburn, J., Kourtellis, N.: The web of false information: rumors, fake news, hoaxes, clickbait, and various other shenanigans. J. Data Inf. Qual. 11(3) (2019). https://doi.org/10.1145/3309699. Article no. 10

  51. Zhang, J., Jianquan, L., Zhien, M.: Global dynamics of an SEIR epidemic model with immigration of different compartments. Acta Mathematica Scientia 26B(3), 551–567 (2006)

    Article  MathSciNet  Google Scholar 

  52. Zhang, X., Ghorbani, A.: An overview of online fake news: characterization, detection, and discussion. Inf. Process. Manag. 57(2) (2020). https://doi.org/10.1016/j.ipm.2019.03.004. Article no. 102025

  53. Zhou, X., Zafarani, R.: A survey of fake news: fundamental theories, detection methods, and opportunities. ACM Comput. Surv. 53, 40 (2020). https://doi.org/10.1145/3395046

    Article  Google Scholar 

Download references

Acknowledgements

The authors are members of the GNCS group. This work was supported by GNCS-INDAM project, and by the Italian Ministry of University and Research (MUR) through the PRIN 2020 project (No. 2020JLWP23) “Integrated Mathematical Approaches to Socio-Epidemiological Dynamics” (CUP: E15F21005420006) and through the PRIN 2017 project (No. 2017JYCLSF) “Structure preserving approximation of evolutionary problems”. Patricia Díaz de Alba gratefully acknowledges Fondo Sociale Europeo REACT EU - Programma Operativo Nazionale Ricerca e Innovazione 2014–2020 and Ministero dell’Università e della Ricerca for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patricia Díaz de Alba .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

D’Ambrosio, R., Díaz de Alba, P., Giordano, G., Paternoster, B. (2022). A Modified SEIR Model: Stiffness Analysis and Application to the Diffusion of Fake News. In: Gervasi, O., Murgante, B., Hendrix, E.M.T., Taniar, D., Apduhan, B.O. (eds) Computational Science and Its Applications – ICCSA 2022. ICCSA 2022. Lecture Notes in Computer Science, vol 13375. Springer, Cham. https://doi.org/10.1007/978-3-031-10522-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-10522-7_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-10521-0

  • Online ISBN: 978-3-031-10522-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics